This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191781 #11 Nov 03 2019 19:42:07 %S A191781 1,1,1,1,1,1,2,2,1,1,3,3,2,1,1,6,6,4,2,1,1,10,10,7,4,2,1,1,20,20,14,8, %T A191781 4,2,1,1,35,35,25,15,8,4,2,1,1,70,70,50,30,16,8,4,2,1,1,126,126,91,56, %U A191781 31,16,8,4,2,1,1,252,252,182,112,62,32,16,8,4,2,1,1,462,462,336,210,119,63,32,16,8,4,2,1,1 %N A191781 Triangle read by rows: T(n,k) is the number of length-n left factors of Dyck paths having length of the first ascent equal to k (1 <= k <= n). %C A191781 Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n). %C A191781 T(n,1) = A001405(n-2) (n>=1). %C A191781 T(n,2) = A001405(n-2) (n>=2). %C A191781 Sum_{k=1..n} k*T(n,k) = A191782(n). %F A191781 G.f.: G(t,z) = (1 - z*c + t*z^3*c^2)/((1 - z*c)*(1 - t*z)*(1 - t*z^2)), where c = (1-sqrt(1 - 4*z^2))/(2*z^2). %e A191781 T(5,2)=3 because we have UUDDU, UUDUD, and UUDUU, where U=(1,1) and D=(1,-1). %e A191781 Triangle starts: %e A191781 1; %e A191781 1, 1; %e A191781 1, 1, 1; %e A191781 2, 2, 1, 1; %e A191781 3, 3, 2, 1, 1; %e A191781 6, 6, 4, 2, 1, 1; %p A191781 c := ((1-sqrt(1-4*z^2))*1/2)/z^2: G := (1-z*c+t*z^3*c^2)/((1-z*c)*(1-t*z)*(1-t*z^2*c)): Gser := simplify(series(G, z = 0, 17)): for n to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 13 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form %Y A191781 Cf. A001405, A191782. %K A191781 nonn,tabl %O A191781 1,7 %A A191781 _Emeric Deutsch_, Jun 18 2011