This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191842 #8 Mar 30 2012 18:57:33 %S A191842 4,5,6,7,8,9,10,11,12,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,32, %T A191842 36,37,40,41,42,43,44,45,47,49,52,58,60,61,64,65,66,68,70,71,73,76,79, %U A191842 84,92,94,95,97,98,103,104,105,107,110,113,115,118,123,128 %N A191842 Ordered sums f+3*g, where f and g are Fibonacci numbers (A000045). %t A191842 c = 1; d = 3; f[n_] := Fibonacci[n]; %t A191842 g[n_] := c*f[n]; h[n_] := d*f[n]; %t A191842 t[i_, j_] := h[i] + g[j]; %t A191842 u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}]; %t A191842 v = Union[Flatten[u ]] (* A191842 *) %t A191842 t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0] %t A191842 u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}]; %t A191842 v1 = Union[Flatten[u1 ]] (* A191843: f(i)-3*f(j) *) %t A191842 g1[n_] := d*f[n]; h1[n_] := c*f[n]; %t A191842 t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0] %t A191842 u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}]; %t A191842 v2 = Union[Flatten[u2 ]] (* A191844: 3*f(i)-f(j) *) %t A191842 v3 = Union[v1, v2] (* A191845 *) %Y A191842 Cf. A191843, A191844, A191845. %K A191842 nonn %O A191842 1,1 %A A191842 _Clark Kimberling_, Jun 17 2011