cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191865 Primes of the form (n-1)^6 + n^5 + (n+1)^4.

This page as a plain text file.
%I A191865 #15 Jan 05 2021 15:04:40
%S A191865 17,563,67559,758677727,5639788283,12519315713,228317617103,
%T A191865 2215267259747,2458514680949,5331791014853,9754511753219,
%U A191865 11469661520567,60568409162663,64329745367417,148696534573127,164890314104507,1843608625927967,2182930574787737,5990875533026939
%N A191865 Primes of the form (n-1)^6 + n^5 + (n+1)^4.
%C A191865 Sum of three consecutive numbers using exponents 6, 5, and 4 to generate prime numbers from n^6 - 5n^5 + 16n^4 - 16n^3 + 21n^2 - 2n + 2 = (n-1)^6 + n^5 + (n+1)^4.
%H A191865 Robert Israel, <a href="/A191865/b191865.txt">Table of n, a(n) for n = 1..10000</a>
%H A191865 Rafael Parra Machío, <a href="http://hojamat.es/parra/prop2011.pdf">PROPIEDADES DEL 2011: Un paseo a través de los números primos</a>
%e A191865 2^6 + 3^5 + 4^4 = 563 and 6^6 + 7^5 + 8^4 = 67559 are primes in the sequence.
%p A191865 R:= NULL: count:= 0:
%p A191865 for n from 1 by 2 while count < 100 do
%p A191865    v:= (n-1)^6+n^5+(n+1)^4;
%p A191865    if isprime(v) then count:= count+1; R:= R,v; fi
%p A191865 od:
%p A191865 R; # _Robert Israel_, Jan 05 2021
%t A191865 lst={};Do[If[PrimeQ[p=(n-1)^6+n^5+(n+1)^4], AppendTo[lst, p]],{n,200}];lst
%t A191865 lst={};Do[If[PrimeQ[p=n^6-5n^5+16n^4-16n^3+21n^2-2n+2], AppendTo[lst, p]],{n,200}];lst
%o A191865 (PARI) forstep(n=1,1e3,2,if(isprime(k=(n-1)^6+n^5+(n+1)^4),print1(k", "))) \\ _Charles R Greathouse IV_, Jun 19 2011
%K A191865 nonn
%O A191865 1,1
%A A191865 _Rafael Parra Machio_, Jun 18 2011