This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191869 #17 Jun 24 2023 12:22:29 %S A191869 0,0,1,1,2,3,5,8,13,21,34,55,88,143,231,373,603,974,1574,2543,4109, %T A191869 6639,10727,17332,28004,45248,73109,118126,190862,308385,498273, %U A191869 805084,1300814,2101789,3395964,5487026,8865658,14324680,23145090,37396661,60423625 %N A191869 First differences of the dying rabbits sequence A000044. %H A191869 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1). %F A191869 G.f.: x^3(1 + x + x^2 + x^3 + x^4)(1 - x + x^2 - x^3 + x^4)/(1 - x - x^3 - x^5 - x^7 - x^9 - x^11). - _Charles R Greathouse IV_, Jun 19 2011 %t A191869 A000044 = CoefficientList[Series[1/(1 - z - z^3 - z^5 - z^7 - z^9 - z^11), {z, 0, 200}], z]; GetDiff[seq_List] := Drop[seq, 1] - Drop[seq, -1]; A191869 = GetDiff[A000044] %o A191869 (PARI) A191869_list=Vec((-x^11-x^9-x^7-x^5-x^3)/(x^11+x^9+x^7+x^5+x^3+x-1)+O(x^99)) /* returns a list of the first 96 nonzero terms, a(3)...a(99) */ %o A191869 (PARI) A191869(n)=polcoeff((1+x^2+x^4+x^6+x^8)/(1-x-x^3-x^5-x^7-x^9-x^11+O(x^max(1,n-2))),n-3) \\ _M. F. Hasler_, Jun 19 2011 %Y A191869 Cf. A000044. %K A191869 nonn,easy %O A191869 1,5 %A A191869 _Vladimir Joseph Stephan Orlovsky_, Jun 18 2011