This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191897 #26 Feb 24 2019 01:58:28 %S A191897 1,1,0,1,0,-2,1,0,-4,0,1,0,-6,0,4,1,0,-8,0,12,0,1,0,-10,0,24,0,-8,1,0, %T A191897 -12,0,40,0,-32,0,1,0,-14,0,60,0,-80,0,16,1,0,-16,0,84,0,-160,0,80,0, %U A191897 1,0,-18,0,112,0,-280,0,240,0,-32 %N A191897 Coefficients of the Z(n,x) polynomials; Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2. %C A191897 The coefficients of the Z(n,x) polynomials by decreasing exponents, see the formulas, define this triangle. %F A191897 Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2. %F A191897 a(n,k) = A077957(k) * A053119(n,k). - _Paul Curtz_, Sep 30 2011 %e A191897 The first few rows of the coefficients of the Z(n,x) are %e A191897 1; %e A191897 1, 0; %e A191897 1, 0, -2; %e A191897 1, 0, -4, 0; %e A191897 1, 0, -6, 0, 4; %e A191897 1, 0, -8, 0, 12, 0; %e A191897 1, 0, -10, 0, 24, 0, -8; %e A191897 1, 0, -12, 0, 40, 0, -32, 0; %e A191897 1, 0, -14, 0, 60, 0, -80, 0, 16; %e A191897 1, 0, -16, 0, 84, 0, -160, 0, 80, 0; %p A191897 nmax:=10: Z(0, x):=1 : Z(1, x):=x: for n from 2 to nmax do Z(n, x) := x*Z(n-1, x) - 2*Z(n-2, x) od: for n from 0 to nmax do for k from 0 to n do T(n, k) := coeff(Z(n, x), x, n-k) od: od: seq(seq(T(n, k), k=0..n), n=0..nmax); # _Johannes W. Meijer_, Jun 27 2011, revised Nov 29 2012 %t A191897 a[n_, k_] := If[OddQ[k], 0, 2^(k/2)*Coefficient[ ChebyshevU[n, x/2], x, n-k]]; Flatten[ Table[ a[n, k], {n, 0, 10}, {k, 0, n}]] (* _Jean-François Alcover_, Aug 02 2012, from 2nd formula *) %Y A191897 Row sums: A107920(n+1). Main diagonal: A077966(n). %Y A191897 Z(n,x=1) = A107920(n+1), Z(n,x=2) = A009545(n+1), %Y A191897 Z(n,x=3) = A000225(n+1), Z(n,x=4) = A007070(n), %Y A191897 Z(n,x=5) = A107839(n), Z(n,x=6) = A154244(n), %Y A191897 Z(n,x=7) = A186446(n), Z(n,x=8) = A190975(n+1), %Y A191897 Z(n,x=9) = A190979(n+1), Z(n,x=10) = A190869(n+1). %Y A191897 Row sum without sign: A113405(n+1). %Y A191897 Cf. A128099, A013609. %K A191897 sign,tabl %O A191897 0,6 %A A191897 _Paul Curtz_, Jun 19 2011 %E A191897 Edited and information added by _Johannes W. Meijer_, Jun 27 2011