This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191910 #23 Mar 05 2019 01:43:54 %S A191910 1,0,2,0,-1,3,0,1,-1,4,0,-1,-1,-1,5,0,1,2,-1,-1,6,0,-1,-1,-1,-1,-1,7, %T A191910 0,1,-1,3,-1,-1,-1,8,0,-1,2,-1,-1,-1,-1,-1,9,0,1,-1,-1,4,-1,-1,-1,-1, %U A191910 10,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,11,0,1,2,3,-1,5,-1,-1,-1,-1,-1,12,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,13 %N A191910 Triangle read by rows: T(n,n)=n; T(n,k) = k-1 if k divides n and k < n, otherwise -1. %C A191910 The double limit lim_{k->infinity} (lim_{m->infinity} (Sum_{n=1..m} T(n,k)/n)) equals the Euler-Mascheroni constant A001620. %e A191910 Triangle starts: %e A191910 1; %e A191910 0, 2; %e A191910 0, -1, 3; %e A191910 0, 1, -1, 4; %e A191910 0, -1, -1, -1, 5; %e A191910 0, 1, 2, -1, -1, 6; %e A191910 0, -1, -1, -1, -1, -1, 7; %e A191910 0, 1, -1, 3, -1, -1, -1, 8; %e A191910 0, -1, 2, -1, -1, -1, -1, -1, 9; %p A191910 A191910 := proc(n,k) if n = k then n; elif modp(n,k) = 0 then k-1 ; else -1; end if; end proc: seq(seq(A191910(n,k),k=1..n),n=1..20); # _R. J. Mathar_, Aug 03 2011 %t A191910 Clear[t]; %t A191910 nn = 13; %t A191910 t[n_, k_] := %t A191910 t[n, k] = If[n <= k, 1, 0] - If[Mod[n, k] == 0, (1 - k), 1]; %t A191910 Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]] %t A191910 (*The double limit for gamma:*) %t A191910 Clear[t]; %t A191910 nn = 1000; %t A191910 kk = 60; %t A191910 t[n_, k_] := %t A191910 t[n, k] = If[n <= k, 1, 0] - If[Mod[n, k] == 0, (1 - k), 1]; %t A191910 a = Table[t[n, kk], {n, 1, nn}]; %t A191910 MatrixForm[a]; %t A191910 b = Range[nn]; %t A191910 gamma = N[Total[a/b]] %Y A191910 Cf. A001620, A191907. %K A191910 sign,tabl,easy %O A191910 1,3 %A A191910 _Mats Granvik_, Jun 19 2011