cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191933 Numbers that are the concatenation of the decimal representation of two nonzero squares.

This page as a plain text file.
%I A191933 #24 Sep 08 2022 08:45:57
%S A191933 11,14,19,41,44,49,91,94,99,116,125,136,149,161,164,169,181,251,254,
%T A191933 259,361,364,369,416,425,436,449,464,481,491,494,499,641,644,649,811,
%U A191933 814,819,916,925,936,949,964,981,1001,1004,1009,1100,1121,1144,1169,1196
%N A191933 Numbers that are the concatenation of the decimal representation of two nonzero squares.
%C A191933 Complement of A193096; A193095(a(n)) > 0; A038670, A039686, A167535, A192993, A193097 and A193144 are subsequences. [_Reinhard Zumkeller_, Jul 17 2011]
%H A191933 Klaus Brockhaus, <a href="/A191933/b191933.txt">Table of n, a(n) for n = 1..1000</a>
%t A191933 Take[Union[Flatten[Table[FromDigits[Flatten[{IntegerDigits[m^2], IntegerDigits[n^2]}]], {m, 20}, {n, 20}]]], 50] (* _Alonso del Arte_, Aug 11 2011 *)
%t A191933 squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[ {b}]]}]; Select[Range[2000], okQ] (* _Jean-François Alcover_, Dec 13 2016 *)
%o A191933 (Magma) CheckSplits:=function(n); v:=false; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then v:=true; end if; end for; return v; end function; [ p: p in [1..1200] | CheckSplits(p) ];
%o A191933 (Haskell)
%o A191933 import Data.List (findIndices)
%o A191933 a191933 n = a191933_list !! (n-1)
%o A191933 a191933_list = findIndices (> 0) $ map a193095 [0..]
%o A191933 -- _Reinhard Zumkeller_, Jul 17 2011
%Y A191933 Cf. A000290, A192993.
%K A191933 nonn,base,easy
%O A191933 1,1
%A A191933 _Klaus Brockhaus_, Jun 19 2011