A192005 Number of non-cyclic abelian groups of finite order. The order is given by A013929.
1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 1, 6, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 10, 1, 5, 1, 1, 4, 4, 1, 2, 1, 1, 6, 1, 1, 3, 2, 5, 4, 1, 1, 2, 1, 1, 2, 1, 14, 1, 2, 2, 1, 9, 1, 1, 1, 2, 1, 1, 6, 4, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 2, 10, 3, 1, 5, 1, 1, 4, 1, 8, 1, 6, 3, 1, 2, 1, 1, 4, 1, 6, 1, 1, 2, 2, 3, 21, 1, 1, 2, 1, 2, 4, 1, 1, 1, 2
Offset: 1
Examples
n=1: there is one abelian group of order 4=A013929(1), which is not the cyclic group Z_4 (in additive notation), namely the Klein 4-group: Z_2 x Z_2 (also denoted by (Z_2)^2). n=2: there are 2 non-cyclic abelian groups of order 8=A013929(2), namely Z_2 x Z_4 and (Z_2)^3. n=3: order 9=A013929(3), (Z_3)^2. n=4: order 12, Z_3 x (Z_2)^2 (note that Z_6 = Z_3 x Z_2 and Z_12 = Z_4 x Z_3, where = means 'is isomorphic to'). n=5: order 16. The four non-cyclic groups are (Z_2)^4, Z_4 x (Z_2)^2, Z_8 x Z_2 and (Z_4)^2.
References
- Andreas Speiser, Die Theorie der Gruppen von endlicher Ordnung, Vierte Auflage, Birkhäuser, 1956.
Links
- Wikipedia, List of small groups.
Programs
-
Mathematica
FiniteAbelianGroupCount /@ Select[Range[300], ! SquareFreeQ[#] &] - 1 (* Amiram Eldar, Oct 01 2023 *)
Formula
See the formula for A000688 using the product of the number of partitions of the exponents in the prime number factorization.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2) * c - 1)/(zeta(2) - 1) - 1 = 3.3025914257..., where c = A021002. - Amiram Eldar, Oct 01 2023
Comments