This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192007 #9 Jun 02 2025 04:11:10 %S A192007 0,-1,1,14,-209,1259,30856,-1561561,37411921,-16085146,-60657859289, %T A192007 4261856902379,-162682375304624,-1611913152464161,993012713177088241, %U A192007 -109110124618216328866,6878613768612426116431,18035860168898476567739,-82542057452137913017262504 %N A192007 E.g.f. sin(cos(x)-1) (even part). %F A192007 a(n)=2*(sum(k=0..n, ((-1)^(k)*sum(j=1..2*k+1,((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*binomial(2*k+1,j)*(-1)^(n+1-j))/2^j))/(2*k+1)!)), n>0, a(0)=0. %t A192007 With[{nn=40},Take[CoefficientList[Series[Sin[Cos[x]-1],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Oct 10 2023 *) %o A192007 (Maxima) %o A192007 a(n):=if n=0 then 0 else 2*(sum(((-1)^(k)*sum(((sum((j-2*i)^(2*n)*binomial(j,i),i,0,(j-1)/2))*binomial(2*k+1,j)*(-1)^(n+1-j))/2^j,j,1,2*k+1))/(2*k+1)!,k,0,n)); %K A192007 sign %O A192007 0,4 %A A192007 _Vladimir Kruchinin_, Jun 21 2011