This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192010 #12 Mar 30 2012 18:51:10 %S A192010 1,4,12,36,132,396,1716,5148,25740,87516,437580,1662804,8314020, %T A192010 38244492,167943204,839716020,3862693692,17298150012,86490750060, %U A192010 397857450276,1850902051284,9254510256420,42570747179532,201748323589956,1008741617949780,4640211442568988 %N A192010 The smallest number with n digits in its prime factorization (total count of digits of all bases and exponents). %C A192010 A050252(a(n)) = n and A050252(m) <> n for m < a(n); %e A192010 a(2) = 4 = 2^2 and A050252(12) = (1+1) = 2; %e A192010 a(3) = 12 = 2^2 * 3 and A050252(12) = (1+1) + 1 = 3; %e A192010 a(4) = 36 = 2^2 * 3^2 and A050252(36) = (1+1) + (1+1) = 4; %e A192010 a(5) = 132 = 2^2 * 3 * 11 and A050252(132) = (1+1) + 1 + 2 = 5; %e A192010 a(6) = 396 = 2^2 * 3^2 * 11 and A050252(396) = (1+1) + (1+1) + 2 = 6; %e A192010 a(7) = 1716 = 2^2 * 3 * 11 * 13 and A050252(1716) = (1+1) + 1 + 2 + 2 = 7; %e A192010 a(8) = 5148 = 2^2 * 3^2 * 11 * 13 and A050252(5148) = (1+1) + (1+1) + 2 + 2 = 8; %e A192010 a(9) = 25740 = 2^2 * 3^2 * 5 * 11 * 13 and A050252(25740) = (1+1) + (1+1) + 1 + 2 + 2 = 9; %e A192010 a(10) = 87516 = 2^2 * 3^2 * 11 * 13 * 17 and A050252(87516) = (1+1) + (1+1) + 2 + 2 + 2 = 10; %e A192010 a(11) = 437580 = 2^2 * 3^2 * 5 * 11 * 13 * 17 and A050252(437580) = (1+1) + (1+1) + 1 + 2 + 2 + 2 = 11; %e A192010 a(12) = 1662804 = 2^2 * 3^2 * 11 * 13 * 17 * 19 and A050252(1662804) = (1+1) + (1+1) + 2 + 2 + 2 + 2 = 12; %e A192010 a(13) = 8314020 = 2^2 * 3^2 * 5 * 11 * 13 * 17 * 19 and A050252(8314020) = (1+1) + (1+1) + 1 + 2 + 2 + 2 + 2 = 13. %o A192010 (Haskell) %o A192010 import Data.List (elemIndex) %o A192010 import Data.Maybe (fromJust) %o A192010 a192010 n = succ $ fromJust $ elemIndex n $ map a050252 [1..] %K A192010 nonn,base %O A192010 1,2 %A A192010 _Reinhard Zumkeller_, Jun 21 2011 %E A192010 a(14)-a(26) from _Donovan Johnson_, Jul 03 2011