cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192013 a(n) = Sum_{d|n} Kronecker(-6, d).

This page as a plain text file.
%I A192013 #33 Oct 17 2022 07:11:59
%S A192013 1,1,1,1,2,1,2,1,1,2,2,1,0,2,2,1,0,1,0,2,2,2,0,1,3,0,1,2,2,2,2,1,2,0,
%T A192013 4,1,0,0,0,2,0,2,0,2,2,0,0,1,3,3,0,0,2,1,4,2,0,2,2,2,0,2,2,1,0,2,0,0,
%U A192013 0,4,0,1,2,0,3,0,4,0,2,2,1,0,2,2,0,0,2,2,0,2,0,0,2,0,0,1,2,3,2,3,2,0,2,0,4
%N A192013 a(n) = Sum_{d|n} Kronecker(-6, d).
%H A192013 G. C. Greubel, <a href="/A192013/b192013.txt">Table of n, a(n) for n = 1..1000</a>
%F A192013 Moebius transform is period 24 sequence [ 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, ...].
%F A192013 a(n) is multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), a(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
%F A192013 G.f.: Sum_{k>0} x^k * (1 + x^(4*k)) * (1 + x^(6*k)) / (1 + x^(12*k)).
%F A192013 Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-6, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-6, p) * p^-s)).
%F A192013 a(n) = A000377(n) = A000377(2*n) = A190611(2*n). a(n) = a(2*n) = a(3*n). - _Michael Somos_, Jul 22 2015
%F A192013 0 <= a(n) <= d(n) and these bounds are sharp. - _Charles R Greathouse IV_, Dec 14 2016
%F A192013 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - _Amiram Eldar_, Oct 17 2022
%e A192013 G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 + 2*x^7 + x^8 + x^9 + 2*x^10 + ...
%t A192013 a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -6, d], { d, Divisors[n]}]];
%o A192013 (PARI) {a(n) = sumdiv( n, d, kronecker( -6, d))};
%o A192013 (PARI) a(n)=sumdivmult(n, d, kronecker(-6, d)) \\ _Charles R Greathouse IV_, Dec 14 2016
%Y A192013 Cf. A000377, A190611.
%Y A192013 Cf. A109017(n) = Kronecker(-6, n). - _Michael Somos_, Jul 22 2015
%K A192013 nonn,mult
%O A192013 1,5
%A A192013 _Michael Somos_, Jun 22 2011