This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192014 #29 Feb 16 2025 08:33:15 %S A192014 0,4,1,8,8,3,6,8,0,8,3,1,5,0,2,9,8,5,0,7,1,2,5,2,8,9,8,6,2,4,5,7,1,6, %T A192014 8,2,4,2,6,0,9,6,7,5,8,4,6,5,4,8,5,7,5,3,5,1,8,2,8,9,2,1,9,5,4,2,0,5, %U A192014 0,0,6,7,2,8,9,6,6,7,1,0,6,4,5,1,8,6,5,5,7,0,7,4,2,2,6,8,1,6,8,7,0,1,4,8,1,7,3,1,9 %N A192014 Decimal expansion of Sum_{k>=1} 1/(3^k * 2^(3^k)). %C A192014 Stoneham proved that this number is 2-normal. David Bailey suggests a pseudorandom number generator based on it (though similar PRNGs could be based on other Stoneham numbers). %H A192014 Vincenzo Librandi, <a href="/A192014/b192014.txt">Table of n, a(n) for n = 0..10000</a> %H A192014 David H. Bailey and Richard E. Crandall, <a href="http://www.emis.de/journals/EM/expmath/volumes/11/11.4/pp527_546.pdf">Random generators and normal numbers</a>, Experimental Mathematics 11:4 (2004), pp. 527-546. [<a href="http://crd.lbl.gov/~dhbailey/dhbpapers/bcnormal-em.pdf">Alternate link</a>] %H A192014 David H. Bailey, <a href="http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf">A pseudo-random number generator based on normal numbers</a> (2004). %H A192014 R. Stoneham, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa22/aa2234.pdf">On absolute (j,eps)-normality in the rational fractions with applications to normal numbers</a>, Acta Arithmetica 22 (1973), pp. 277-286. %H A192014 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/StonehamNumber.html">Stoneham Number</a>. %H A192014 <a href="/index/Ps#PRN">Index to sequences related to pseudo-random numbers</a> %e A192014 0.0418836808315029850712528986245716824260967584654857535182892195420500672896... %t A192014 digits = 108; s = NSum[1/(3^n*2^3^n), {n, 1, Infinity}, WorkingPrecision -> digits + 5, NSumTerms -> 6]; Join[{0}, RealDigits[s, 10, digits] // First] (* _Jean-François Alcover_, Mar 07 2013, updated Mar 13 2015 *) %o A192014 (PARI) suminf(k=1,x=3^k;(1./x)>>x) \\ _Charles R Greathouse IV_, Jun 22 2011 %K A192014 nonn,cons,easy %O A192014 0,2 %A A192014 _Charles R Greathouse IV_, Jun 22 2011