A192018 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the binary Fibonacci tree of order n (1<=k<=2n-3; entries in row n are the coefficients of the corresponding Wiener polynomial).
1, 3, 2, 1, 6, 6, 5, 3, 1, 11, 13, 14, 12, 10, 5, 1, 19, 24, 30, 31, 31, 28, 19, 7, 1, 32, 42, 56, 66, 74, 78, 77, 61, 32, 9, 1, 53, 71, 98, 124, 152, 175, 196, 203, 180, 118, 49, 11, 1, 87, 118, 166, 218, 284, 349, 419, 485, 525, 502, 384, 207, 70, 13, 1, 142, 194, 276, 370, 499, 645, 812, 998, 1189, 1331, 1349, 1152, 749, 336, 95, 15, 1
Offset: 2
Examples
Triangle starts: 1; 3, 2, 1; 6, 6, 5, 3, 1; 11, 13, 14, 12, 10, 5, 1; 19, 24, 30, 31, 31, 28, 19, 7, 1;
References
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009.
Programs
-
Maple
G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 13)): for n to 10 do r[n] := sort(coeff(Gser, z, n)) end do; w[1] := 0: w[2] := t: for n from 3 to 10 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: for n from 2 to 10 do seq(coeff(w[n], t, k), k = 1 .. 2*n-3) end do; # yields sequence in triangular form
Formula
The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program).
Comments