cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192019 The Wiener index of the binary Fibonacci tree of order n.

This page as a plain text file.
%I A192019 #15 Dec 10 2016 03:00:11
%S A192019 1,10,50,214,802,2802,9275,29580,91668,277924,828092,2433140,7067885,
%T A192019 20337318,58054534,164602410,463990190,1301338150,3633753815,
%U A192019 10107239160,28016346216,77419909800,213349801560,586471432104,1608485221177,4402406713762
%N A192019 The Wiener index of the binary Fibonacci tree of order n.
%C A192019 The binary Fibonacci trees f(k) of order k are rooted binary trees defined as follows: 1. f(0) has no nodes and f(1) consists of a single node. 2. For k>=2, f(k) is constructed from a root with f(k-1) as its left subtree and f(k-2) as its right subtree. See the Iyer & Reddy references.
%D A192019 K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.
%H A192019 B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:5&lt;959::AID-QUA2&gt;3.0.CO;2-W">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969.
%H A192019 K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, <a href="http://arxiv.org/abs/0910.4432">Wiener index of binomial trees and Fibonacci trees</a>, arXiv:0910.4432 [cs.DM], 2009.
%F A192019 a(n) = Sum_{k>=1} k*A192018(n,k).
%F A192019 The Wiener index of a connected graph is the derivative of the Wiener polynomial W(t) of the graph, evaluated at t=1. The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program).
%F A192019 Empirical G.f.: x^2*(x^4-3*x^2+4*x+1)/((x+1)^2*(x^2-3*x+1)^2*(x^2+x-1)^2). [_Colin Barker_, Nov 17 2012]
%e A192019 a(3)=10 because the binary Fibonacci tree of order 3 is basically the path graph A - B - R - C and we have 3 distances equal to 1 (AB, BR, RC), 2 distances equal to 2 (AR and BC) and 1 distance equal to 3 (AC); 3*1 + 2*2 + 1*3 = 10.
%p A192019 G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 30)): for n to 27 do r[n] := sort(coeff(Gser, z, n)) end do: w[1] := 0: w[2] := t: for n from 3 to 27 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: seq(subs(t = 1, diff(w[n], t)), n = 2 .. 27);
%Y A192019 Cf. A192018.
%K A192019 nonn
%O A192019 2,2
%A A192019 _Emeric Deutsch_, Jun 21 2011