cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A192018 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the binary Fibonacci tree of order n (1<=k<=2n-3; entries in row n are the coefficients of the corresponding Wiener polynomial).

Original entry on oeis.org

1, 3, 2, 1, 6, 6, 5, 3, 1, 11, 13, 14, 12, 10, 5, 1, 19, 24, 30, 31, 31, 28, 19, 7, 1, 32, 42, 56, 66, 74, 78, 77, 61, 32, 9, 1, 53, 71, 98, 124, 152, 175, 196, 203, 180, 118, 49, 11, 1, 87, 118, 166, 218, 284, 349, 419, 485, 525, 502, 384, 207, 70, 13, 1, 142, 194, 276, 370, 499, 645, 812, 998, 1189, 1331, 1349, 1152, 749, 336, 95, 15, 1
Offset: 2

Views

Author

Emeric Deutsch, Jun 21 2011

Keywords

Comments

The binary Fibonacci trees f(k) of order k is a rooted binary tree defined as follows: 1. f(0) has no nodes and f(1) consists of a single node. 2. For k>=2, f(k) is constructed from a root with f(k-1) as its left subtree and f(k-2) as its right subtree. See the Iyer & Reddy references.
Row n contains 2n-3 entries.
T(n,1) = A001911(n-1) (Fibonacci numbers minus 2).
Sum_{k>=1} k*T(n,k) = A192019(n) (the Wiener indices).

Examples

			Triangle starts:
   1;
   3,  2,  1;
   6,  6,  5,  3,  1;
  11, 13, 14, 12, 10,  5,  1;
  19, 24, 30, 31, 31, 28, 19,  7,  1;
		

References

  • K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.

Crossrefs

Programs

  • Maple
    G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 13)): for n to 10 do r[n] := sort(coeff(Gser, z, n)) end do; w[1] := 0: w[2] := t: for n from 3 to 10 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: for n from 2 to 10 do seq(coeff(w[n], t, k), k = 1 .. 2*n-3) end do; # yields sequence in triangular form

Formula

The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program).
Showing 1-1 of 1 results.