A192020 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the binomial tree of order n (1 <= k <= 2n-1; entries in row n are the coefficients of the corresponding Wiener polynomial).
1, 3, 2, 1, 7, 8, 8, 4, 1, 15, 22, 31, 28, 17, 6, 1, 31, 52, 90, 112, 104, 68, 30, 8, 1, 63, 114, 225, 344, 418, 388, 270, 136, 47, 10, 1, 127, 240, 516, 908, 1331, 1568, 1464, 1064, 589, 240, 68, 12, 1, 255, 494, 1123, 2180, 3663, 5138, 5931, 5560, 4181, 2482, 1137, 388, 93, 14, 1
Offset: 0
Examples
T(2,1)=3, T(2,2)=2, T(2,3)=1 because the binomial tree b(2) is basically the path tree A-B-R-C and we have 3 (AB, BR, RC), 2 (AR, BC), and 1 (AC) pairs of nodes at distances 1, 2, and 3, respectively. Triangle starts: 1; 3, 2, 1; 7, 8, 8, 4, 1; 15, 22, 31, 28, 17, 6, 1; 31, 52, 90, 112, 104, 68, 30, 8, 1;
References
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.
- T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms. MIT Press / McGraw-Hill (1990).
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009.
Programs
-
Maple
G := 1/(1-z-t*z): Gser := simplify(series(G, z = 0, 11)): for n from 0 to 8 do r[n] := sort(coeff(Gser, z, n)) end do: w[0] := 0: for n to 8 do w[n] := sort(expand(2*w[n-1]+t*r[n-1]^2)) end do: for n to 8 do seq(coeff(w[n], t, k), k = 1 .. 2*n-1) end do; # yields sequence in triangular form
-
Mathematica
max = 8; g = 1/(1 - z - t*z); r = CoefficientList[ Series[g, {z, 0, max}], z]; w[0] = 0; w[n_] := w[n] = 2 w[n-1] + t*r[[n]]^2; Flatten[ Table[ Drop[ CoefficientList[ w[n], t], 1], {n, 1, max}]] (* Jean-François Alcover, Oct 06 2011, after Maple *)
-
PARI
a(n) = my(s=sqrtint(n),r=n-s^2); sum(i=0,s, 2^(s-i)*binomial(2*i,r)); \\ Kevin Ryde, Sep 13 2019
Formula
T(n,1) = A000225(n) = 2^n - 1.
T(n,2) = A005803(n+1) = 2^(n+1) - 2*n - 2.
Sum_{k>=1} k*T(n,k) = A192021(n) (the Wiener indices).
The Wiener polynomial w(n,t) of the binomial tree of order n satisfies the recurrence relation w(n,t) = 2*w(n-1,t) + t*(r(n-1,t))^2, w(0,t)=0, where r(n,t) is the generating polynomial of the nodes of the binomial tree b(n) with respect to the level of the nodes (for example, r(1,t) = 1 + t for the one-edge tree b(1)= | ; see the Maple program).
T(n,k) = Sum_{j=1..n} 2^(n-j)*binomial(2*j-2, k-1).
w(n,t) = Sum_{i=0..n-1} 2^(n-1-i)*t*(t+1)^(2i) = t * ((t+1)^(2n) - 2^n)/((t+1)^2 - 2). - Kevin Ryde, Sep 13 2019
Comments