cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192021 The Wiener index of the binomial tree of order n.

This page as a plain text file.
%I A192021 #27 Jun 15 2025 20:00:23
%S A192021 0,1,10,68,392,2064,10272,49216,229504,1048832,4719104,20972544,
%T A192021 92276736,402657280,1744838656,7516209152,32212287488,137439019008,
%U A192021 584115683328,2473901424640,10445360988160,43980466159616,184717955563520,774056190148608,3236962240561152
%N A192021 The Wiener index of the binomial tree of order n.
%C A192021 The binomial trees b(k) of order k are ordered trees defined as follows: 1. b(0) consists of a single node. 2. For k>=1, b(k) is obtained from two copies of b(k-1) by linking them in such a way that the root of one is the leftmost child of the root of the other. See the Iyer & Reddy references.
%D A192021 K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.
%D A192021 T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms. MIT Press / McGraw-Hill (1990)
%H A192021 B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:5&lt;959::AID-QUA2&gt;3.0.CO;2-W">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969.
%H A192021 K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, <a href="http://arxiv.org/abs/0910.4432">Wiener index of binomial trees and Fibonacci trees</a>, arXiv:0910.4432 [cs.DM], 2009.
%H A192021 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (10,-32,32).
%F A192021 a(n) = Sum_{k>=1} k*A192020(n,k).
%F A192021 From _Colin Barker_, Jul 07 2012: (Start)
%F A192021 a(n) = 2^(n-1)*(1+2^n*(n-1)).
%F A192021 a(n) = 10*a(n-1) - 32*a(n-2) + 32*a(n-3).
%F A192021 G.f.: x/((1-2*x)*(1-4*x)^2). (End)
%p A192021 a := proc(n) (n-1)*2^(2*n-1)+2^(n-1) end proc: seq(a(n), n = 0 .. 23);
%t A192021 LinearRecurrence[{10, -32, 32}, {0, 1, 10}, 23] (* _Jean-François Alcover_, Sep 23 2017 *)
%Y A192021 Cf. A192020.
%K A192021 nonn,easy
%O A192021 0,3
%A A192021 _Emeric Deutsch_, Jun 22 2011
%E A192021 Initial 0 in the sample values which is Wiener index of singleton tree b(0), and consequent amendments to formulas. - _Kevin Ryde_, Sep 12 2019