This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192023 #24 Sep 08 2022 08:45:57 %S A192023 1,10,31,68,125,206,315,456,633,850,1111,1420,1781,2198,2675,3216, %T A192023 3825,4506,5263,6100,7021,8030,9131,10328,11625,13026,14535,16156, %U A192023 17893,19750,21731,23840,26081,28458,30975,33636,36445,39406,42523,45800,49241,52850,56631 %N A192023 The Wiener index of the comb-shaped graph |_|_|...|_| with 2n (n>=1) nodes. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. %C A192023 The Wiener polynomials of these graphs are given in A192022. %C A192023 a(n) = Sum_{k>=1} A192022(n,k). %C A192023 Conjecture: for n>2, A192023(n-2) is the number of 2 X 2 matrices with all terms in {1,2,...,n} and determinant 2n. - _Clark Kimberling_, Mar 31 2012 %H A192023 Vincenzo Librandi, <a href="/A192023/b192023.txt">Table of n, a(n) for n = 1..10000</a> %H A192023 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1) %F A192023 a(n) = n*(2*n^2 + 6*n - 5)/3. %F A192023 G.f.: -x*(-1 - 6*x + 3*x^2) / (x-1)^4. - _R. J. Mathar_, Jun 26 2011 %e A192023 a(2)=10 because in the graph |_| there are 3 pairs of nodes at distance 1, 2 pairs at distance 2, and 1 pair at distance 3 (3*1 + 2*2 + 1*3 = 10). %p A192023 a := proc (n) options operator: arrow: (1/3)*n*(2*n^2+6*n-5) end proc: seq(a(n), n = 1 .. 43); %o A192023 (Magma) [n*(2*n^2+6*n-5)/3: n in [1..50]]; // _Vincenzo Librandi_, Jul 04 2011 %Y A192023 Cf. A192022. %K A192023 nonn,easy %O A192023 1,2 %A A192023 _Emeric Deutsch_, Jun 24 2011