cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192024 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the double-comb graph \/\/\/...\/_\/ with 3n (n>=1) nodes. The entries in row n are the coefficients of the corresponding Wiener polynomial.

Original entry on oeis.org

2, 1, 5, 6, 4, 8, 12, 12, 4, 11, 18, 21, 12, 4, 14, 24, 30, 21, 12, 4, 17, 30, 39, 30, 21, 12, 4, 20, 36, 48, 39, 30, 21, 12, 4, 23, 42, 57, 48, 39, 30, 21, 12, 4, 26, 48, 66, 57, 48, 39, 30, 21, 12, 4, 29, 54, 75, 66, 57, 48, 39, 30, 21, 12, 4, 32, 60, 84, 75, 66, 57, 48, 39, 30, 21, 12, 4
Offset: 1

Views

Author

Emeric Deutsch, Jun 25 2011

Keywords

Comments

Row n contains n+1 entries.
Sum of entries in row n is 3*n*(3*n-1)/2=A062741(n).
Sum(k*T(n,k),k>=1)=A192025(n) (the Wiener indices).

Examples

			T(2,1)=5, T(2,2)=6, T(2,3)=4 because in the graph \/_\/ there are 5 pairs of nodes at distance 1, 6 pairs at distance 2, and 4 pairs at distance 3.
Triangle starts:
2,1;
5,6,4;
8,12,12,4;
11,18,21,12,4;
		

Crossrefs

Programs

  • Maple
    Q := proc (n) options operator, arrow: n*(t^2+2*t)+t*(1+2*t)^2*(sum((n-j)*t^(j-1), j = 1 .. n-1)) end proc: for n to 11 do P[n] := sort(expand(Q(n))) end do: for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n+1) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z)=t*z*(2+t+z+2*t*z+3*t^2*z)/((1-t*z)*(1-z)^2).
G.f. of column 1: z*(2+z)/(1-z)^2.
G.f. of column 2: z*(1+4*z+z^2)/(1-z)^2.
G.f. of column k>=3: z^(k-1)*(4+4*z+z^2)/(1-z)^2.
The generating polynomial of row n (i.e. the Wiener polynomial of the double-comb with 3n nodes) is n*(2*t +t^2)+t*(1+2*t)^2*(n*(1-t)-(1-t^n))/(1-t)^2 or, equivalently, n*(2*t+t^2)+t*(1+2*t)^2*Sum((n-j)*t^(j-1), j=1..n-1).