cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A192031 Rectangular array read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the helm graph G(n) obtained from a wheel graph with n spokes by adjoining a pendant edge at each node of the cycle (n>=3, k>=1). The entries in row n are the coefficients of the corresponding Wiener polynomial.

Original entry on oeis.org

9, 9, 3, 12, 14, 8, 2, 15, 20, 15, 5, 18, 27, 24, 9, 21, 35, 35, 14, 24, 44, 48, 20, 27, 54, 63, 27, 30, 65, 80, 35, 33, 77, 99, 44, 36, 90, 120, 54, 39, 104, 143, 65, 42, 119, 168, 77, 45, 135, 195, 90, 48, 152, 224, 104, 51, 170, 255, 119, 54, 189, 288, 135, 57, 209, 323, 152, 60, 230, 360, 170
Offset: 3

Views

Author

Emeric Deutsch, Jun 30 2011

Keywords

Comments

The graph G(n) is a special case of the graph G(n,m) defined in A192026 (m=1).
T(n,k) is also the number of unordered pairs of nodes at distance k in the gear graph G(n) obtained from a wheel graph with n spokes by adding a node between each pair of adjacent nodes of the cycle (n>=3, k>=1). Example: T(3,3)=3 because in the graph G(3) with vertex set {A,B,C,D,B',C',D'} and edge set {BD', D'C, CB', B'D, DC', C'B,AB,AC,AD} there are exactly 3 pairs of vertices at distance 3: BB', CC', and DD'.
Row 3 contains 3 entries; row n>=4 contains 4 entries.
Sum of entries in row n is n*(2n+1)=A014105(n).
Sum(k*T(n,k),k>=1)=6*n*(n-1)=A049598(n-1) (the Wiener indices).

Examples

			T(3,3)=3 because in the graph G(3) with vertex set {A,B,C,D,B',C',D'} and edge set {BC,CD,DB,AB,AC,AD,BB',CC",DD'} there are exactly 3 pairs of vertices at distance 3: B'C', C'D', and D'B'.
Rectangular array starts:
9,9,3;
12,14,8,2;
15,20,15,5;
18,27,24,9;
		

Crossrefs

Programs

  • Maple
    P := proc (n) options operator, arrow: 3*n*t+(1/2)*n*(n+3)*t^2+n*(n-2)*t^3+(1/2)*n*(n-3)*t^4 end proc: T := proc (n, k) options operator, arrow: coeff(P(n), t, k) end proc: seq(T(3, k), k = 1 .. 3); for n from 4 to 20 do seq(T(n, k), k = 1 .. 4) end do; # yields rows 3,4,..., 20 of the rectangular array
  • Mathematica
    P[n_] := 3*n*t + (1/2)*n*(n+3)*t^2 + n*(n-2)*t^3 + (1/2)*n*(n-3)*t^4; T[n_]:=Rest@CoefficientList[P[n], t]; Table[T[n], {n, 3, 20}] // Flatten (* Jean-François Alcover, Sep 07 2024, after Maple program *)

Formula

Generating polynomial of row n (i.e. the Wiener polynomial of the graph G(n)) is P(n;t)=3*n*t+(1/2)*n*(n+3)*t^2+n*(n-2)*t^3+(1/2)*n*(n-3)*t^4.
Conjectures from Colin Barker, Mar 28 2019: (Start)
G.f.: x^3*(9 + 3*x^2 + 9*x^3 - 22*x^4 + 3*x^5 - 10*x^6 - 11*x^7 + 16*x^8 + 2*x^9 + 6*x^10 + 3*x^11 - 3*x^12 - 3*x^13) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^3).
a(n) = a(n-1) - a(n-2) + a(n-3) + 2*a(n-4) - 2*a(n-5) + 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) for n>16. (End)
Showing 1-1 of 1 results.