cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192027 Square array read by antidiagonals: W(n,m) (n >= 1, m >= 1) is the Wiener index of the graph G(n,m) obtained from the n-circuit graph by adjoining m pendant edges at each node of the circuit.

Original entry on oeis.org

1, 10, 4, 27, 29, 9, 60, 75, 58, 16, 105, 160, 147, 97, 25, 174, 275, 308, 243, 146, 36, 259, 447, 525, 504, 363, 205, 49, 376, 658, 846, 855, 748, 507, 274, 64, 513, 944, 1239, 1371, 1265, 1040, 675, 353, 81, 690, 1278, 1768, 2002, 2022, 1755, 1380, 867, 442, 100
Offset: 1

Views

Author

Emeric Deutsch, Jun 26 2011

Keywords

Comments

W(1,m) = m^2 = A000290(m).
W(2,m) = A079273(m+1).
W(n,1) = A180574(n).

Examples

			a(3,1)=27 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB, BC, CA, AA', BB', CC'} we have 6 pairs of vertices at distance 1 (the edges), 6 pairs at distance 2 (A'B, A'C, B'A, B'C, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 6*1 + 6*2 + 3*3 = 27.
The square array starts:
   1,   4,   9,  16,  25,   36,   49, ...;
  10,  29,  58,  97, 146,  205,  274, ...;
  27,  75, 147, 243, 363,  507,  675, ...;
  60, 160, 308, 504, 748, 1040, 1380, ...;
		

Crossrefs

Programs

  • Maple
    W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields the antidiagonals in triangular form
    W := proc (n, m) if `mod`(n, 2) = 0 then (1/2)*n*((1/4)*n^2+2*m^2*n+(1/4)*m^2*n^2+2*m*n+(1/2)*m*n^2-2*m) else (1/8)*(n^2-1+m^2*n^2+8*m^2*n-m^2+2*m*n^2+8*m*n-10*m)*n end if end proc: for n to 10 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 1,2,...,10.
    P := proc (n, m) if `mod`(n, 2) = 0 then sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1))*(1+m*t)^2+(1/2)*n*t^((1/2)*n)*(1+m*t)^2)) else sort(expand(n*(m*t+(1/2)*m*(m-1)*t^2)+n*(sum(t^j, j = 1 .. (1/2)*n-1/2))*(1+m*t)^2)) end if end proc: P(4,9);

Formula

If n even, then: W(n,m) = n*(n^2/4 + 2*m^2*n + m^2*n^2/4 + 2*m*n + m*n^2/2 - 2*m)/2;
if n odd, then: W(n,m) = n*(n^2 - 1 + m^2*n^2 + 8*m^2*n - m^2 + 2*m*n^2 + 8*m*n - 10*m)/8.
The Wiener polynomial P(n,m;t) of the graph G(n,m) is given in the 3rd Maple program. It gives, for example, P(4,9) = 162*t^4 + 360*t^3 + 218*t^2 + 40*t. Its derivative, evaluated at t=1, yields the corresponding Wiener index W(4,9)=4184.