A192030 Square array read by antidiagonals: W(n,p) (n>=1, p>=1) is the Wiener index of the graph G(n,p) obtained in the following way: consider n copies of a star tree with p-1 edges, add a vertex to their union, and connect this vertex with the roots of the star trees.
1, 4, 4, 9, 20, 9, 16, 48, 48, 16, 25, 88, 117, 88, 25, 36, 140, 216, 216, 140, 36, 49, 204, 345, 400, 345, 204, 49, 64, 280, 504, 640, 640, 504, 280, 64, 81, 368, 693, 936, 1025, 936, 693, 368, 81, 100, 468, 912, 1288, 1500, 1500, 1288, 912, 468, 100, 121, 580, 1161, 1696, 2065, 2196, 2065, 1696, 1161, 580, 121
Offset: 1
Examples
W(2,2)=20 because G(2,2) is the path graph with 4 edges; its Wiener index is 4*1+3*2+2*3+1*4=20. The square array starts: 1,4,9,16,25,36,49,...; 4,20,48,88,140,204,280,...; 9,48,117,216,345,504,693,...; 16,88,216,400,640,936,1288,...;
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- Stephan Wagner, A class of trees and its Wiener index, Acta Applic. Mathem. 91 (2) (2006) 119-132.
Programs
-
Maple
W := proc (n, p) options operator, arrow; n*p*(2*n*p-n-p+1) end proc: for n to 11 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields sequence in triangular form W := proc (n, p) options operator, arrow; n*p*(2*n*p-n-p+1) end proc: for n to 7 do seq(W(n, p), p = 1 .. 10) end do; # yields the first 10 entries in each of the first 7 rows
Formula
W(n,p)=n*p*(2*n*p-n-p+1).
The Wiener polynomial of the graph G(n,p) is a*t+b*t^2+c*t^3+d*t^4, where a=n*p, b=(1/2)*n*(n+p^2-p-1), c=n*(n-1)*(p-1), d=(1/2)*n*(n-1)*(p-1)^2.
Comments