A192039 Decimal approximation of x such that f(x)=6, where f is the Fibonacci function described in Comments.
5, 3, 9, 1, 8, 4, 9, 6, 0, 6, 9, 0, 1, 7, 7, 5, 5, 2, 1, 2, 8, 0, 4, 0, 8, 4, 4, 2, 0, 8, 3, 4, 7, 9, 7, 9, 9, 4, 7, 8, 8, 2, 9, 1, 4, 3, 1, 4, 0, 1, 3, 1, 5, 4, 6, 1, 7, 4, 8, 8, 4, 9, 8, 6, 2, 7, 3, 6, 3, 1, 8, 8, 4, 9, 3, 1, 9, 9, 0, 9, 7, 2, 6, 0, 8, 6, 8, 1, 5, 8, 8, 5, 9, 1, 4, 0, 4, 1, 1, 9
Offset: 1
Examples
5.391849606901775521280408442083479799478829143140
Crossrefs
Cf. A192038.
Programs
-
Mathematica
r = GoldenRatio; s = 1/Sqrt[5]; f[x_] := s (r^x - r^-x Cos[Pi x]); x /. FindRoot[Fibonacci[x] == 6, {x, 5}, WorkingPrecision -> 100] RealDigits[%, 10] (Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[ Fibonacci[x], {x, -7, 7}] (* Peter J. C. Moses, Jun 21 2011 *)
Comments