A192041 Decimal approximation of x such that f(x)=1/2, where f is the Fibonacci function described in Comments.
4, 5, 0, 7, 0, 6, 6, 6, 6, 5, 7, 4, 5, 4, 4, 6, 0, 0, 2, 3, 0, 6, 0, 5, 0, 6, 3, 1, 4, 0, 3, 2, 8, 5, 7, 1, 5, 1, 8, 1, 4, 4, 0, 2, 4, 0, 2, 0, 3, 6, 2, 2, 4, 6, 1, 8, 7, 8, 4, 7, 5, 3, 5, 5, 7, 7, 8, 1, 6, 3, 5, 8, 9, 8, 9, 0, 4, 0, 4, 7, 9, 9, 3, 5, 5, 7, 5, 9, 8, 7, 3, 2, 9, 4, 1, 0, 4, 3, 4, 3
Offset: 0
Examples
0.450706666574544600230605063140328571518144024020
Crossrefs
Cf. A192038.
Programs
-
Mathematica
r = GoldenRatio; s = 1/Sqrt[5]; f[x_] := s (r^x - r^-x Cos[Pi x]); x /. FindRoot[Fibonacci[x] == 1/2, {x, 5}, WorkingPrecision -> 100] RealDigits[%, 10] (Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[ Fibonacci[x], {x, -7, 7}] (* Peter J. C. Moses, Jun 21 2011 *)
Comments