A192042 Decimal approximation of x such that f(x)=3/2, where f is the Fibonacci function described in Comments.
2, 5, 0, 9, 3, 9, 4, 9, 1, 6, 3, 5, 4, 6, 8, 7, 0, 9, 2, 0, 5, 6, 3, 8, 9, 8, 4, 4, 6, 7, 9, 3, 5, 1, 3, 0, 1, 4, 8, 6, 9, 0, 7, 4, 1, 4, 9, 8, 4, 5, 1, 3, 2, 1, 2, 5, 3, 4, 6, 4, 1, 4, 7, 3, 9, 7, 3, 7, 7, 2, 3, 2, 1, 8, 8, 8, 8, 4, 0, 1, 1, 2, 1, 8, 1, 8, 9, 7, 5, 9, 4, 8, 7, 1, 6, 7, 3, 2, 4, 0
Offset: 1
Examples
2.50939491635468709205638984467935130148690741498451
Crossrefs
Cf. A192038.
Programs
-
Mathematica
r = GoldenRatio; s = 1/Sqrt[5]; f[x_] := s (r^x - r^-x Cos[Pi x]); x /. FindRoot[Fibonacci[x] == 3/2, {x, 5}, WorkingPrecision -> 100] RealDigits[%, 10] (Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[ Fibonacci[x], {x, -7, 7}] (* Peter J. C. Moses, Jun 21 2011 *)
Comments