A192043 Decimal approximation of x such that f(x)=r, where f is the Fibonacci function described in Comments and r=(golden ratio).
2, 6, 1, 4, 1, 6, 5, 4, 9, 6, 6, 5, 0, 7, 0, 9, 5, 2, 2, 2, 4, 5, 0, 7, 9, 8, 0, 5, 3, 6, 0, 9, 5, 7, 3, 1, 9, 8, 9, 6, 4, 8, 5, 9, 2, 6, 3, 0, 0, 2, 8, 7, 7, 3, 7, 8, 8, 3, 4, 0, 7, 2, 9, 6, 4, 4, 1, 5, 4, 2, 7, 4, 4, 2, 5, 6, 6, 8, 5, 7, 3, 0, 9, 6, 1, 1, 6, 1, 3, 2, 6, 8, 1, 3, 1, 7, 6, 7, 3, 6
Offset: 1
Examples
2.6141654966507095222450798053609573198964859263002877
Crossrefs
Cf. A192038.
Programs
-
Mathematica
r = GoldenRatio; s = 1/Sqrt[5]; f[x_] := s (r^x - r^-x Cos[Pi x]); x /. FindRoot[Fibonacci[x] == r, {x, 5}, WorkingPrecision -> 100] RealDigits[%, 10] (Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[ Fibonacci[x], {x, -7, 7}] (* Peter J. C. Moses, Jun 21 2011 *)
Comments