A192044 Decimal approximation of x such that f(x)=r+1, where f is the Fibonacci function described in Comments and r=(golden ratio).
3, 7, 0, 8, 2, 2, 8, 3, 1, 9, 6, 1, 1, 8, 1, 5, 4, 4, 6, 2, 2, 7, 9, 5, 6, 9, 7, 6, 0, 4, 7, 6, 2, 9, 0, 3, 1, 4, 1, 4, 4, 4, 7, 8, 0, 1, 5, 1, 4, 7, 0, 4, 6, 7, 1, 2, 4, 7, 2, 4, 0, 2, 3, 9, 9, 5, 4, 0, 8, 0, 1, 9, 6, 5, 8, 7, 3, 7, 9, 3, 6, 4, 3, 9, 8, 5, 9, 4, 2, 2, 6, 1, 1, 6, 1, 6, 0, 6, 3, 3
Offset: 1
Examples
3.70822831961181544622795697604762903141444780151470467124724
Programs
-
Mathematica
r = GoldenRatio; s = 1/Sqrt[5]; f[x_] := s (r^x - r^-x Cos[Pi x]); x /. FindRoot[Fibonacci[x] == r+1, {x, 5}, WorkingPrecision -> 100] RealDigits[%, 10] (Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[ Fibonacci[x], {x, -7, 7}] (* Peter J. C. Moses, Jun 21 2011 *)
Comments