cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192044 Decimal approximation of x such that f(x)=r+1, where f is the Fibonacci function described in Comments and r=(golden ratio).

Original entry on oeis.org

3, 7, 0, 8, 2, 2, 8, 3, 1, 9, 6, 1, 1, 8, 1, 5, 4, 4, 6, 2, 2, 7, 9, 5, 6, 9, 7, 6, 0, 4, 7, 6, 2, 9, 0, 3, 1, 4, 1, 4, 4, 4, 7, 8, 0, 1, 5, 1, 4, 7, 0, 4, 6, 7, 1, 2, 4, 7, 2, 4, 0, 2, 3, 9, 9, 5, 4, 0, 8, 0, 1, 9, 6, 5, 8, 7, 3, 7, 9, 3, 6, 4, 3, 9, 8, 5, 9, 4, 2, 2, 6, 1, 1, 6, 1, 6, 0, 6, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Jun 21 2011

Keywords

Comments

f(x)=(r^x-r^(-x*cos[pi*x]))/sqrt(5), where r=(golden ratio)=(1+sqrt(5))/2. This function, a variant of the Binet formula, gives Fibonacci numbers for integer values of x; e.g., f(3)=2, f(4)=3, f(5)=5.

Examples

			3.70822831961181544622795697604762903141444780151470467124724
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; s = 1/Sqrt[5];
    f[x_] := s (r^x - r^-x Cos[Pi x]);
    x /. FindRoot[Fibonacci[x] == r+1, {x, 5}, WorkingPrecision -> 100]
    RealDigits[%, 10]
    (Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[
    Fibonacci[x], {x, -7, 7}]
    (* Peter J. C. Moses, Jun 21 2011 *)