This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192066 #35 Feb 16 2025 08:33:15 %S A192066 1,1,4,1,6,4,8,1,10,6,12,4,14,8,24,1,18,10,20,6,32,12,24,4,26,14,28,8, %T A192066 30,24,32,1,48,18,48,10,38,20,56,6,42,32,44,12,60,24,48,4,50,26,72,14, %U A192066 54,28,72,8,80,30,60,24,62,32,80,1,84,48,68,18,96,48,72,10,74,38,104,20,96,56,80,6 %N A192066 Sum of the odd unitary divisors of n. %C A192066 The unitary analog of A000593. %H A192066 Reinhard Zumkeller, <a href="/A192066/b192066.txt">Table of n, a(n) for n = 1..10000</a> %H A192066 R. J. Mathar, <a href="http://arxiv.org/abs/1106.4038">Survey of Dirichlet series of multiplicative arithmetic functions</a>, arXiv:1106.4038 [math.NT], 2011-2012, section 4.2. %H A192066 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a>. %H A192066 Wikipedia, <a href="http://en.wikipedia.org/wiki/Unitary_divisor">Unitary divisor</a>. %F A192066 a(n) = Sum_{d|n, d odd, gcd(d,n/d)=1} d. %F A192066 Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s))/( zeta(2s-1)*(1-2^(1-2s)) ). %F A192066 Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (21*zeta(3)). - _Vaclav Kotesovec_, Feb 02 2019 %F A192066 Multiplicative with a(2^e) = 1, and a(p^e) = p^e + 1 for p > 2. - _Amiram Eldar_, Sep 18 2020 %e A192066 n=9 has the divisors 1, 3 and 9, of which 3 is not a unitary divisor because gcd(3,9/3) = gcd(3,3) != 1. This leaves 1 and 9 as unitary divisors which sum to a(9) = 1+9 = 10. %p A192066 unitaryOddSigma := proc(n,k) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if type(d,'odd') then if igcd(d,n/d) = 1 then a := a+d^k ; end if; end if; end do: a ; end proc: %p A192066 A := proc(n) unitaryOddSigma(n,1) ;end proc: %t A192066 a[n_] := DivisorSum[n, Boole[OddQ[#] && GCD[#, n/#] == 1]*#&]; %t A192066 Array[a, 80] (* _Jean-François Alcover_, Nov 16 2017 *) %t A192066 f[2, p_] := 1; f[p_, e_] := p^e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 18 2020 *) %o A192066 (Haskell) %o A192066 a192066 = sum . filter odd . a077610_row %o A192066 -- _Reinhard Zumkeller_, Feb 12 2012 %o A192066 (PARI) a(n) = sumdiv(n, d, if ((gcd(d, n/d)==1) && (d%2), d)); \\ _Michel Marcus_, Nov 17 2017 %Y A192066 Cf. A068068, A034448. %Y A192066 Cf. A077610, A206787. %K A192066 nonn,mult,easy %O A192066 1,3 %A A192066 _R. J. Mathar_, Jun 22 2011