A192248 0-sequence of reduction of binomial coefficient sequence B(n,4)=A000332 by x^2 -> x+1.
1, 1, 16, 51, 191, 569, 1619, 4259, 10694, 25709, 59743, 134818, 296798, 639518, 1352498, 2813750, 5769200, 11676395, 23358450, 46239770, 90667076, 176244326, 339887026, 650715076, 1237467151, 2338753519, 4394813644, 8214444389
Offset: 1
Keywords
Programs
-
Mathematica
c[n_] := n (n + 1) (n + 2) (n + 3)/24; (* binomial B(n,4), A000332 *) Table[c[n], {n, 1, 15}] q[x_] := x + 1; p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[ Last[Most[ FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 40}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192248 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192249 *) Table[Coefficient[Part[t, n]/5, x, 1], {n, 1, 40}] (* A192069 *) (* by Peter J. C. Moses, Jun 20 2011 *)
Formula
Conjecture: G.f.: -x*(-1+5*x-20*x^2+30*x^3-25*x^4+8*x^5) / ( (x-1)*(x^2+x-1)^5 ). - R. J. Mathar, May 04 2014
Comments