This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192081 #33 Aug 02 2023 10:19:10 %S A192081 1,1,18,86400,548674560000,14450101093977292800000, %T A192081 3837346984091658732083085312000000000, %U A192081 21256593329287301582222798129123366786826240000000000000,4543629380532096097361509541360459283717770305881596724510720000000000000000000 %N A192081 Wronskian of sin(k*x) and cos(k*x), k=1,...,n. %C A192081 a(n) is the Wronskian of functions {cos(x), sin(x), cos(2x), sin(2x), ..., cos(n*x), sin(n*x)}. %H A192081 MathOverflow, <a href="http://mathoverflow.net/questions/77767/the-wronskian-of-sinkx-and-coskx-k1-n">The Wronskian of sin(kx) and cos(kx)</a> %F A192081 a(n) = (1! * 3! * ... * (2n-1)!)^2/n!. %e A192081 a(3) = (1*6*120)^2/6 = 86400. %p A192081 a:= n-> mul((2*i-1)!, i=1..n)^2/n!: %p A192081 seq(a(n), n=0..8); # _Alois P. Heinz_, Aug 02 2023 %t A192081 s = 1; Join[{s}, Table[s=s*((2*n-1)!)^2/n, {n, 2, 7}]] (* _T. D. Noe_, Oct 11 2011 *) %K A192081 nonn %O A192081 0,3 %A A192081 _Mark Sapir_, Oct 11 2011 %E A192081 a(0)=1 prepended by _Alois P. Heinz_, Aug 02 2023