This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192087 #17 Jan 09 2021 02:12:47 %S A192087 2862,3092,3500,4222,4780,5608,7124,10126,10198,11212,11426,12140, %T A192087 12212,12284,12356,12428,12714,12854,12924,15270,16252,16476,18594, %U A192087 18672,18750,18828,19214,20764,21150,23752,24214,24598,24828,27180,27342,27424,27916,28666,29406,29568 %N A192087 Potential magic constants of a 10 X 10 magic square composed of consecutive primes. %C A192087 For a 10 X 10 magic square composed of 100 consecutive primes, the sum of these primes must be a multiple of 20. %C A192087 This sequence consists of even integers equal the sum of 100 consecutive primes divided by 10. It is not known whether each such set of consecutive primes can be arranged into a 10 X 10 magic square but it looks plausible. %C A192087 Actual magic squares were constructed for all listed magic constants <= 11212. %H A192087 Natalia Makarova, <a href="http://www.natalimak1.narod.ru/prime10.htm">Sequence of Magic Numbers MK 10th Order</a> (in Russian). %e A192087 a(1)=2862 for a square containing prime(9)..prime(108): %e A192087 [23 179 409 373 263 137 461 457 523 37 %e A192087 193 353 443 199 317 109 337 397 131 383 %e A192087 71 73 389 251 593 167 439 449 233 197 %e A192087 571 293 101 229 29 557 271 31 379 401 %e A192087 127 419 283 241 269 239 547 89 181 467 %e A192087 491 433 223 113 41 577 43 311 563 67 %e A192087 281 97 163 587 191 313 149 509 421 151 %e A192087 307 499 227 431 103 83 59 479 211 463 %e A192087 277 359 257 331 569 541 53 79 47 349 %e A192087 521 157 367 107 487 139 503 61 173 347] %e A192087 . %e A192087 a(10)=11212 %e A192087 [769 863 1171 967 859 1381 1237 1459 1289 1217 %e A192087 1163 953 797 1297 1049 1021 1303 977 1423 1229 %e A192087 809 1277 1153 937 1151 1409 1291 839 1249 1097 %e A192087 1429 1231 1193 1451 1061 829 821 1361 823 1013 %e A192087 1453 997 947 1091 1321 887 1283 941 811 1481 %e A192087 1069 1201 1427 1129 907 919 1373 1039 1117 1031 %e A192087 1009 1123 1301 1093 1367 1483 911 1051 1087 787 %e A192087 991 1109 1279 877 1223 929 1187 1433 1327 857 %e A192087 1213 1439 1063 971 1447 883 773 1259 983 1181 %e A192087 1307 1019 881 1399 827 1471 1033 853 1103 1319] %p A192087 s:= proc(n) option remember; %p A192087 `if` (n=1, add (ithprime(i), i=1..100), %p A192087 ithprime(n+99) -ithprime(n-1) +s(n-1)) %p A192087 end: %p A192087 a:= proc(n) option remember; local k, m; %p A192087 a(n-1); %p A192087 for k from 1+b(n-1) while irem (s(k), 20, 'm')<>0 do od; %p A192087 b(n):= k; m %p A192087 end: %p A192087 a(0):=0: b(0):=0: %p A192087 seq (2*a(n), n=1..50); %Y A192087 Cf. A073520, A173981, A176571, A177434, A188536, A189188, A191679. %K A192087 nonn %O A192087 1,1 %A A192087 _Natalia Makarova_, Jun 23 2011