This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192090 #26 Jan 01 2023 09:47:29 %S A192090 1,5,29,44,66,126,238,490,922,1714,3306,6246,12102,22994,43682,83810, %T A192090 159154,305062,581382,1108362,2119602,4037338,7716554,14720142, %U A192090 28084702,53639778,102298794,195341594,372753634,711338798,1357975774 %N A192090 Number of tatami tilings of a 4 X n grid (with monomers allowed). %C A192090 A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point. %H A192090 Alois P. Heinz, <a href="/A192090/b192090.txt">Table of n, a(n) for n = 0..1000</a> %H A192090 A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, <a href="https://doi.org/10.37236/596">Monomer-Dimer Tatami Tilings of Rectangular Regions</a>, Electronic Journal of Combinatorics, 18(1) (2011) P109, 24 pages. %F A192090 G.f.: -13 + 3*x + 3*x^2 + 2*x^3 + (14 - 12*x + 10*x^2 + 10*x^4 - 104*x^5 + 114*x^6 - 80*x^7 + 34*x^8 + 12*x^9 - 2*x^10)/(1 - x - x^2 - x^3 + x^4 - 7*x^5 + 7*x^6 - x^7 + x^8 + x^9 + x^10 - x^11). %e A192090 Here are some tatami tilings of the 4 X 3 grid: %e A192090 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A192090 |_ _| |_| |_| |_ _| | |_ _| | |_| |_ _| %e A192090 |_ _|_| | | |_|_ _| |_| |_|_| | |_|_ _| %e A192090 |_|_ _|_| |_|_ _|_| |_|_|_ _| |_|_ _|_| %Y A192090 Cf. A180970, (3 X n grid), A192091 (5 X n grid), row sums of A272473. %K A192090 nonn,easy %O A192090 0,2 %A A192090 _Frank Ruskey_ and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jun 23 2011