This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192095 #20 Dec 15 2016 02:33:06 %S A192095 1,2,2,2,4,4,2,2,4,6,8,6,4,2,2,4,6,12,12,8,12,12,6,4,2,2,4,6,12,18,20, %T A192095 18,16,16,18,20,18,12,6,4,2,2,4,6,12,18,28,34,32,32,28,28,28,28,32,32, %U A192095 34,28,18,12,6,4,2,2,4,6,12,18,28,44,52,54,60,58,52,54,48,40,48,54,52,58,60,54,52,44,28,18,12,6,4,2 %N A192095 Number of tatami tilings of an n X n square with exactly k horizontal dimers and n monomers (no restriction on the number of vertical dimers). %C A192095 A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point. %C A192095 The (n, r) entry contains the number of tatami tilings of an n X n square with exactly r horizontal dimers and n monomers and arbitrarily many vertical dimers(n: row number, r: column number). %C A192095 Rows are of length 1 + 1*0/2, 1 + 2*1/2, 1 + 3*2/2, 1 + 4*3/2, ... and in the range [1, 8]. %C A192095 Columns are counted from 0. %C A192095 Here is the first three rows of the sequence: %C A192095 1 %C A192095 2 2 %C A192095 2 4 4 2 %C A192095 The sum of all entries in the n-th row is n*2^(n-1) [1]. %C A192095 Note that numbers of horizontal dimers and vertical dimers are interchangeable. %H A192095 1. A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, <a href="http://webhome.cs.uvic.ca/~ruskey/Publications/Tatami/TatamiMonomer.html">Auspicious Tatami Mat Arrangements</a>, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297. %H A192095 2. A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, <a href="http://www.combinatorics.org/Volume_18/Abstracts/v18i1p109.html">Monomer-Dimer Tatami Tilings of Rectangular Regions</a>, Electronic Journal of Combinatorics, 18(1) (2011) P109, 24 pages. %e A192095 Here are the tatami tilings of the 3 X 3 square with three monomers: %e A192095 No horizontal dimer: %e A192095 _ _ _ _ _ _ %e A192095 |_| |_| | |_| | %e A192095 | |_| | |_| |_| %e A192095 |_|_|_| |_|_|_| %e A192095 One horizontal dimer: %e A192095 _ _ _ _ _ _ _ _ _ _ _ _ %e A192095 |_ _| | |_| |_| |_| |_| | |_ _| %e A192095 |_| |_| |_|_| | | |_|_| |_| |_| %e A192095 |_|_|_| |_ _|_| |_|_ _| |_|_|_| %e A192095 Two horizontal dimers: %e A192095 _ _ _ _ _ _ _ _ _ _ _ _ %e A192095 |_ _|_| |_|_ _| |_|_| | | |_|_| %e A192095 | |_ _| |_ _| | |_ _|_| |_|_ _| %e A192095 |_|_|_| |_|_|_| |_|_ _| |_ _|_| %e A192095 Three horizontal dimers: %e A192095 _ _ _ _ _ _ %e A192095 |_ _|_| |_|_ _| %e A192095 |_|_ _| |_ _|_| %e A192095 |_ _|_| |_|_ _| %K A192095 tabf,nonn %O A192095 1,2 %A A192095 _Frank Ruskey_ and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jul 14 2011