This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192110 #46 Jan 22 2022 23:45:54 %S A192110 0,1,3,5,7,13,15,23,29,31,37,47,55,61,63,101,119,125,127,175,229,247, %T A192110 253,255,269,295,431,485,503,509,511,781,943,997,1015,1021,1023,1319, %U A192110 1631,1805,1909,1967,2021,2039,2045,2047,3367,3853,4015,4069,4087,4093 %N A192110 Monotonic ordering of nonnegative differences 2^i - 3^j, for 40 >= i >= 0, j >= 0. %C A192110 Comments from _N. J. A. Sloane_, Oct 21 2019: (Start) %C A192110 Warning: Note the definition assumes i <= 40. %C A192110 Because of this assumption, it is not true that this is (except for a(1)=0) the complement of A075824 in the odd integers. %C A192110 However, by definition, it is the complement of A328077. %C A192110 (End) %C A192110 All 52 sequences in this set are finite. - _Georg Fischer_, Nov 16 2021 %H A192110 Rok Cestnik, <a href="/A192110/b192110.txt">Table of n, a(n) for n = 1..534</a> [truncated to 2^40-1 by _Georg Fischer_, Nov 16 2021] %H A192110 H. Gauchman and I. Rosenholtz (Proposers), R. Martin (Solver), <a href="https://www.jstor.org/stable/2691457">Difference of prime powers, Problem 1404</a>, Math. Mag., 65 (No. 4, 1992), 265; <a href="https://www.jstor.org/stable/2690747">Solution</a>, Math. Mag., 66 (No. 4, 1993), 269. %H A192110 Math Overflow, <a href="https://mathoverflow.net/questions/29926/3n-2m-pm-41-is-not-possible-how-to-prove-it/29956#29956">3^n - 2^m = +-41 is not possible. How to prove it?</a>, Several contributors, Jun 29 2010. %e A192110 The differences accrue like this: %e A192110 1-1 %e A192110 2-1 %e A192110 4-3.....4-1 %e A192110 8-3.....8-1 %e A192110 16-9....16-3....16-1 %e A192110 32-27...32-9....32-3....32-1 %e A192110 64-27...64-9....64-3....64-1 %t A192110 c = 2; d = 3; t[i_, j_] := c^i - d^j; %t A192110 u = Table[t[i, j], {i, 0, 40}, {j, 0, i*Log[d, c]}]; %t A192110 v = Union[Flatten[u ]] %Y A192110 Cf. A075824, A173671, A192111, A328077 (complement). %Y A192110 For primes, see A007643, A007644, A321671. %Y A192110 This is the first of a set of 52 similar sequences: %Y A192110 A192110: 2^i-3^j, A192111: 3^i-2^j, A192112: 2^i-4^j, A192113: 4^i-2^j, A192114: 2^i-5^j, A192115: 5^i-2^j, A192116: 2^i-6^j, A192117: 6^i-2^j, %Y A192110 A192118: 2^i-7^j, A192119: 7^i-2^j, A192120: 2^i-8^j, A192121: 8^i-2^j, A192122: 2^i-9^j, A192123: 9^i-2^j, A192124: 2^i-10^j, A192125: 10^i-2^j, %Y A192110 A192147: 3^i-4^j, A192148: 4^i-3^j, A192149: 3^i-5^j, A192150: 5^i-3^j, A192151: 3^i-6^j, A192152: 6^i-3^j, A192153: 3^i-7^j, A192154: 7^i-3^j, %Y A192110 A192155: 3^i-8^j, A192156: 8^i-3^j, A192157: 3^i-9^j, A192158: 9^i-3^j, A192159: 3^i-10^j, A192160: 10^i-3^j, A192161: 4^i-5^j, A192162: 5^i-4^j, %Y A192110 A192163: 4^i-6^j, A192164: 6^i-4^j, A192165: 4^i-7^j, A192166: 7^i-4^j, A192167: 4^i-8^j, A192168: 8^i-4^j, A192169: 4^i-9^j, A192170: 9^i-4^j, %Y A192110 A192171: 4^i-10^j, A192172: 10^i-4^j, A192193: 5^i-6^j, A192194: 6^i-5^j, A192195: 5^i-7^j, A192196: 7^i-5^j, A192197: 5^i-8^j, A192198: 8^i-5^j, %Y A192110 A192199: 5^i-9^j, A192200: 9^i-5^j, A192201: 5^i-10^j, A192202: 10^i-5^j. %K A192110 nonn,fini %O A192110 1,3 %A A192110 _Clark Kimberling_, Jun 23 2011