This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192135 #17 Apr 14 2025 05:32:55 %S A192135 8,16,32,64,81,128,243,256,512,729,1024,2048,2187,4096,6561,8192, %T A192135 15625,16384,19683,32768,59049,65536,78125,131072,177147,262144, %U A192135 390625,524288,531441,1048576,1594323,1953125,2097152,4194304,4782969,5764801,8388608,9765625,14348907 %N A192135 Prime powers p^e with p < e. %H A192135 Donovan Johnson, <a href="/A192135/b192135.txt">Table of n, a(n) for n = 1..10000</a> %F A192135 a(n) = A000961(A192187(n)). %F A192135 A095874(a(n)) = A192187(n). %F A192135 Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^p*(p-1)) = 0.26859872089648243789... . - _Amiram Eldar_, Apr 14 2025 %p A192135 A192135 := proc(nmax) local s ,i,p,e ; s := {} ; for i from 1 do p := ithprime(i) ; if p^(p+1) > nmax then break; end if; for e from p+1 do if p^e > nmax then break; end if; s := s union {p^e} ; end do: end do: sort(s) ; end proc: %p A192135 A192135(20000000) ; # _R. J. Mathar_, Jul 09 2011 %t A192135 seq[lim_] := Module[{s = {}, p = 2}, While[p^p <= lim, AppendTo[s, p^Range[p+1, Log[p, lim]]]; p = NextPrime[p]]; Sort[Flatten[s]]]; seq[10^7] (* _Amiram Eldar_, Apr 14 2025 *) %Y A192135 Complement to A074583 with respect to A000961. %Y A192135 Cf. A095874, A192187, A257278. %K A192135 nonn %O A192135 1,1 %A A192135 _Reinhard Zumkeller_, Jun 26 2011