A192176 Index array for A192175 (distance up to next prime), by antidiagonals.
1, 2, 4, 3, 6, 9, 5, 8, 11, 24, 7, 12, 15, 72, 34, 10, 14, 16, 77, 42, 46, 13, 19, 18, 79, 53, 47, 30, 17, 22, 21, 87, 61, 91, 62, 282, 20, 25, 23, 92, 68, 97, 66, 295, 99, 26, 27, 32, 94, 80, 114, 137, 319, 180, 154, 28, 29, 36, 124, 82, 121, 146, 331, 205, 259, 189
Offset: 1
Examples
Northwest corner: 1....2....3....5....7....10....13 4....6....8....12...14...19....22 9....11...15...16...18...21....23 24...72...77...79...87...92....94 34...42...53...61...68...80....82 ... These are the index numbers of the primes displayed in the Example at A192175; e.g., in that display, the top row begins with 2,3,5,11,17,29,41.
Programs
-
Mathematica
z = 5000; (* z = number of primes used *) row[1] = (#1[[1]] &) /@ Cases[Array[{#1, PrimeQ[1 + Prime[#1]] || PrimeQ[2 + Prime[#1]]} &, {z}], {, True}]; Do[row[x] = Complement[(#1[[1]] &) /@ Cases[Array[{#1, PrimeQ[2 x + Prime[#1]]} &, {z}], {, True}],Flatten[Array[row, {x - 1}]]], {x, 2, 16}]; TableForm[Array[row, {16}]] (* A192176 array *) Flatten[Table[row[k][[n - k + 1]], {n, 1, 11}, {k, 1, n}]] (* A192176 sequence *) (* by Peter J. C. Moses, Jun 20 2011 *)
Comments