A192178 Array by distance to nearest prime, by antidiagonals.
1, 2, 5, 3, 7, 26, 4, 9, 34, 23, 6, 11, 50, 37, 118, 8, 13, 56, 47, 122, 53, 10, 15, 64, 67, 144, 89, 120, 12, 17, 76, 79, 186, 119, 300, 409, 14, 19, 86, 83, 204, 121, 324, 479, 532, 16, 21, 92, 93, 206, 157, 530, 531, 896, 293, 18, 25, 94, 97, 216, 173, 534, 533, 898, 631, 11
Offset: 1
Examples
Northwest corner: 1....2....3....4....6....8....10 5....7....9....11...13...15...17 26...34...50...56...64...76...86 23...37...47...67...79...83...93 118..122..144..186..204..206..216 ... For example, 34 is in row 3 recause its distance to the nearest prime is 3.
Programs
-
Mathematica
z = 5000; (* z = number of primes used *) row[1] = (#1[[1]] &) /@ Cases[Array[{#1, PrimeQ[#1 - 1] || PrimeQ[#1 + 1] || #1 == 1 || #1 == 2} &, {z}], {_, True}]; Do[row[x] = Complement[(#1[[1]] &) /@ Cases[Array[{#1, PrimeQ[#1 - x] || PrimeQ[#1 + x]} &, {z}], {_, True}], Flatten[Array[row, {x - 1}]]], {x, 2, 10}]; TableForm[Array[row, {10}]] (* A192178 array *) Flatten[Table[row[k][[n - k + 1]], {n, 1, 11}, {k, 1, n}]] (* A192178 sequence *) (* by Peter J. C. Moses, Jun 24 2011 *)
Comments