This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192208 #44 Feb 23 2022 11:22:47 %S A192208 1,6,30,138,606,2610,11070,46386,192606,793938,3253038,13261746, %T A192208 53832462,217707762,877594086,3527521794,14142930774,56574143754, %U A192208 225841103190,899866007610,3579435531846,14215941861138,56378805654510,223297285830858,883326046736814 %N A192208 Number of n-step prudent self-avoiding walks on hexagonal [= triangular] lattice. %C A192208 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. %C A192208 A prudent walk never takes a step pointing towards a vertex it has already visited. Prudent walks are self-avoiding but not reversible in general. %H A192208 Alois P. Heinz, <a href="/A192208/b192208.txt">Table of n, a(n) for n = 0..61</a> %H A192208 Mireille Bousquet-Mélou, <a href="https://arxiv.org/abs/0804.4843">Families of prudent self-avoiding walks</a>, arXiv:0804.4843. J. Combin. Theory Ser. A 117 no. 3 (2010) 313-344. %H A192208 Enrica Duchi, <a href="https://hal.archives-ouvertes.fr/hal-00159320">On some classes of prudent walks</a>, in: FPSAC'05, Taormina, Italy, 2005. %H A192208 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a> %e A192208 Two 5-step self-avoiding walks on hexagonal lattice from (S) to (E), the walk at left is prudent while the walk at right is not prudent: %e A192208 . o---o...o...o...o---o %e A192208 . . \ . \ . . . . . \ . \ %e A192208 . o..(S)..o...o...o..(E)..o %e A192208 . . . . / . . . . . . . / %e A192208 . (E)--o...o...o..(S)--o %p A192208 i:= n-> max(n, 0)+1: d:= n-> max(n-1, -1): %p A192208 b:= proc(n, x, y, z, u, v, w) option remember; %p A192208 `if`(n=0, 1, `if`(x>y, b(n, y, x, w, v, u, z), %p A192208 b(n-1, d(x), d(y), z, i(u), i(v), w)+ %p A192208 `if`(min(y, z)<=0 or x=-1, %p A192208 b(n-1, d(y), d(z), u, i(v), i(w), x), 0)+ %p A192208 `if`(min(z, u)<=0 or y=-1, %p A192208 b(n-1, d(z), d(u), v, i(w), i(x), y), 0)+ %p A192208 `if`(min(v, w)<=0 or x=-1, %p A192208 b(n-1, d(v), d(w), x, i(y), i(z), u), 0)+ %p A192208 `if`(min(w, x)<=0 or y=-1, %p A192208 b(n-1, d(w), d(x), y, i(z), i(u), v), 0))) %p A192208 end: %p A192208 a:= n-> `if`(n=0, 1, 6*b(n-1, -1$2, 0, 1$2, 0)): %p A192208 seq(a(n), n=0..20); %t A192208 i[n_]:= Max[n, 0]+1; d[n_]:= Max[n-1, -1]; %t A192208 b[n_, x_, y_, z_, u_, v_, w_] := b[n, x, y, z, u, v, w] = If[n==0, 1, If[x>y, b[n, y, x, w, v, u, z], b[n-1, d[x], d[y], z, i[u], i[v], w]+ If[Min[y, z]<=0 || x==-1, b[n-1, d[y], d[z], u, i[v], i[w], x], 0]+ If[Min[z, u]<=0 || y==-1, b[n-1, d[z], d[u], v, i[w], i[x], y], 0]+ If[Min[v, w]<=0 || x==-1, b[n-1, d[v], d[w], x, i[y], i[z], u], 0]+ If[Min[w, x]<=0 || y==-1, b[n-1, d[w], d[x], y, i[z], i[u], v], 0]]]; %t A192208 a[n_]:= If[n==0, 1, 6*b[n-1, -1,-1, 0, 1,1, 0]]; %t A192208 Table[a[n],{n,0,20}] (* _Jean-François Alcover_, Aug 10 2017, translated from Maple *) %Y A192208 Cf. A001334, A192871. %K A192208 nonn,walk %O A192208 0,2 %A A192208 _Alois P. Heinz_, Jul 05 2011