This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192211 #38 Oct 18 2014 10:06:05 %S A192211 0,0,3,4,15,12,63,72,207,290,979,864,4095,5250,13485,16496,65535, %T A192211 69948,262143,240000,888888,1319758,4106167,3318144,16199225,22355866, %U A192211 56730861,66385676,266917769,267331800,1073741823,1073809184,3481794591,5726404746,16262257795 %N A192211 Number of zero trace primitive elements in Galois field GF(2^n). %D A192211 R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997. Chapter 2 discusses primitivity in sections 1-2 and trace in section 3. %H A192211 W.-S. Chou and S.D. Cohen, <a href="http://dx.doi.org/10.1006/ffta.2000.0284">Primitive elements with zero traces</a>, Finite Fields and Their Appl. 7 (2001), 125-141; DOI:10.1006/ffta.2000.0284. %F A192211 a(n) = n * A152049(n). [_Joerg Arndt_, Jul 03 2011] %o A192211 (GAP) %o A192211 p := 2; %o A192211 for n in [1..17] do %o A192211 F := GF(p^n); %o A192211 num := 0; %o A192211 for f in F do %o A192211 if (f = Zero(F)) then continue; fi; %o A192211 if (Trace(f) <> Zero(F)) then continue; fi; %o A192211 if (Order(f) <> Size(F) - 1) then continue; fi; %o A192211 num := num + 1; %o A192211 od; %o A192211 Print (num, ","); %o A192211 od; %Y A192211 Cf. A192212, A192213, A192214, A192215, A192216 for other primes. %Y A192211 Cf. A152049, A107222. %K A192211 nonn,hard %O A192211 1,3 %A A192211 _Pasha Zusmanovich_, Jun 25 2011 %E A192211 Terms 69948, ..., 1073809184 from _Joerg Arndt_, Jun 26 2011 %E A192211 Terms >1073809184 from _Joerg Arndt_, Jul 03 2011