A192250 0-sequence of reduction of central binomial coefficient sequence by x^2 -> x+1.
1, 1, 7, 27, 167, 923, 5543, 32999, 200309, 1221329, 7503033, 46301793, 286971677, 1784658077, 11131825877, 69611130917, 436270168817, 2739539507957, 17232530582057, 108564692241257, 684901029237677, 4326215549824277, 27357682806703397
Offset: 1
Keywords
Programs
-
Mathematica
c[n_] := (2 n)!/(n! n!); (* central binomial coefficients, A000984 *) Table[c[n], {n, 0, 15}] q[x_] := x + 1; p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192250 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192251 *) Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192070 *) (* by Peter J. C. Moses, Jun 20 2011 *)
Formula
Conjecture: (n-1)*(n-2)*a(n) -(5*n-7)*(n-2)*a(n-1) -2*(2*n-3)*(3*n-8)*a(n-2) +4*(2*n-3)*(2*n-5)*a(n-3)=0. - R. J. Mathar, May 04 2014
Comments