This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192256 #14 Aug 23 2025 08:03:25 %S A192256 1,1,28,92,342,990,2705,6801,16278,37278,82532,177572,373105,768241, %T A192256 1554616,3098808,6095738,11851922,22805745,43477745,82197986, %U A192256 154231706,287411688,532248552,980014177,1794978145,3271695220,5936514356,10726952958 %N A192256 0-sequence of reduction of (n^3) by x^2 -> x+1. %C A192256 See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". %F A192256 Empirical g.f.: x*(1-4*x+29*x^2-36*x^3+43*x^4-16*x^5+2*x^6)/(1-x)/(1-x-x^2)^4. - _Colin Barker_, Feb 10 2012 %t A192256 c[n_] := n^3; (* A000578 *) %t A192256 Table[c[n], {n, 1, 15}] %t A192256 q[x_] := x + 1; %t A192256 p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] %t A192256 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192256 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192256 t = Table[ %t A192256 Last[Most[ %t A192256 FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, %t A192256 30}] %t A192256 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192256 *) %t A192256 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192257 *) %t A192256 (* _Peter J. C. Moses_, Jun 20 2011 *) %Y A192256 Cf. A192232, A192257. %K A192256 nonn,changed %O A192256 1,3 %A A192256 _Clark Kimberling_, Jun 27 2011