A192268 Anti-abundant numbers.
7, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 27, 28, 30, 31, 32, 33, 35, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 55, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113
Offset: 1
Examples
25 is anti-abundant because its anti-divisors are 2, 3, 7, 10, 17 and their sum is 39 > 25.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Paolo P. Lava)
Programs
-
Maple
isA192268 := proc(n) A066417(n) > n ; end proc: for n from 1 to 500 do if isA192268(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jul 04 2011
-
Mathematica
antiAbQ[n_] := Total[Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]] > n; Select[Range[120], antiAbQ] (* _Amiram Eldar, Jan 13 2022 after Michael De Vlieger at A066417 *)
-
Python
from itertools import count, islice from sympy import divisor_sigma, multiplicity def A192268gen(): return filter(lambda n:divisor_sigma(2*n-1)+divisor_sigma(2*n+1)+divisor_sigma(n//2**(k:=multiplicity(2,n)))*2**(k+1)-7*n-2 > 0,count(2)) A192268_list = list(islice(A192268gen(),16)) # Chai Wah Wu, Dec 23 2021
Comments