This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192269 #26 Oct 23 2019 02:48:14 %S A192269 1,3,4,5,7,13,17,32,38,45,67,77,143,203,247,473,682,787,1463,2678, %T A192269 2992,3465,8662,10868,16065,25987,26163,29452,112613,157658,202702, %U A192269 233415,363825,795217,1148647,1914412,2139637,5743237,5743238,8393963,11869357,64353712 %N A192269 Super anti-abundant numbers. %C A192269 Like A004394 but using anti-divisors. A super anti-abundant number is a number n such that sigma*(n)/n > sigma*(k)/k for all k<n, where sigma*(n) is the sum of the anti-divisors of n. This is the RECORDS transform of the sequence of fractions A066417(n)/n. %H A192269 Jud McCranie, <a href="/A192269/b192269.txt">Table of n, a(n) for n = 1..66</a> %e A192269 1 -> sigma*(1)/1 = 0/1 = 0; %e A192269 3 -> sigma*(3)/3 = 2/3 = 0.6666...; %e A192269 4 -> sigma*(4)/4 = 3/4 = 0.75; %e A192269 5 -> sigma*(5)/5 = 5/5 = 1; %e A192269 7 -> sigma*(7)/7 = 10/7 = 1.4285...; etc. %p A192269 with(numtheory); P:= proc(n) local a,k,i,j,s; s:=0; print(1); %p A192269 for i from 3 to n do %p A192269 k:=0; j:=i; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; a:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2; %p A192269 if a/i>s then s:=a/i; print(i); fi; od; end: P(50000); %Y A192269 Cf. A004394, A066417, A192268. %K A192269 nonn %O A192269 1,2 %A A192269 _Paolo P. Lava_, Jun 28 2011 %E A192269 a(26)-a(42) from _Donovan Johnson_, Sep 07 2011