A192271 Anti-weird numbers.
11, 12, 13, 14, 15, 18, 20, 21, 25, 27, 28, 30, 37, 40, 42, 43, 46, 47, 48, 50, 55, 57, 58, 62, 65, 66, 75, 78, 80, 84, 86, 87, 90, 91, 92, 93, 97, 99, 100, 107, 111, 113, 118, 119, 120, 121, 124, 125, 126, 128, 132, 133, 135, 136, 140, 142, 145, 152, 153, 155, 160, 161, 163, 168, 170, 173, 177, 180, 181, 183, 184, 186, 188, 190, 192, 196, 197, 198, 204, 205, 208, 210, 212, 213, 218, 222, 223
Offset: 1
Keywords
Examples
25 is an anti-weird number because it is anti-abundant (its anti-divisors are 2, 3, 7, 10, 17 and their sum is 39 > 25) and no subsets of its anti-divisors add up to 25.
Programs
-
Maple
# see A066272 isA192270 := proc(n) local a,S ; a := antidivisors(n) ; S := combinat[subsets](a) ; while not S[finished] do if convert(S[nextvalue](),`+`) = n then return true; end if; end do; false ; end proc: isA192268 := proc(n) A066417(n) > n ; end proc: isA192271 := proc(n) isA192268(n) and not isA192270(n) ; end proc: for n from 1 to 40 do if isA192271(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 04 2011
Comments