cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192272 Harmonic anti-divisor numbers.

Original entry on oeis.org

5, 8, 41, 56, 588, 946, 972, 1568, 2692, 5186, 6874, 8104, 17386, 27024, 63584, 84026, 96896, 167786, 197416, 2667584, 4921776, 5315554, 27914146, 30937248, 124370356, 505235234, 3238952914, 5079644880, 6698880678, 19672801456
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2011

Keywords

Comments

Like A001599 but using anti-divisors. The numbers n for which the harmonic mean of the anti-divisors of n, i.e., n*A066272(n)/A066417(n), is an integer.
a(31) > 2*10^10. - Donovan Johnson, Sep 23 2011

Examples

			The anti-divisors of 588 are 11: 5, 8, 11, 24, 25, 47, 56, 107, 168, 392, 235. Their sum is 1078 and therefore 588*11/1078 = 6.
		

Crossrefs

Programs

  • Maple
    P:=proc(i)
    local a,b,c,k,n,s;
    for n from 3 by 1 to i do
    a:={};
      for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; od;
       b:=nops(a); c:=op(a); s:=0;
       if b>1 then for k from 1 to b do s:=s+c[k]; od;
       else s:=c;
       fi;
      if trunc(n*b/s)=n*b/s then lprint(n); fi;
    od;
    end:
    P(20000);
  • Python
    from sympy.ntheory.factor_ import antidivisor_count, antidivisors
    A192272_list = []
    for n in range(3,10**10):
        if (n*antidivisor_count(n)) % sum(antidivisors(n,generator=True)) == 0:
            A192272_list.append(n) # Chai Wah Wu, Sep 07 2018

Extensions

a(15)-a(30) from Donovan Johnson, Sep 23 2011