A192272 Harmonic anti-divisor numbers.
5, 8, 41, 56, 588, 946, 972, 1568, 2692, 5186, 6874, 8104, 17386, 27024, 63584, 84026, 96896, 167786, 197416, 2667584, 4921776, 5315554, 27914146, 30937248, 124370356, 505235234, 3238952914, 5079644880, 6698880678, 19672801456
Offset: 1
Examples
The anti-divisors of 588 are 11: 5, 8, 11, 24, 25, 47, 56, 107, 168, 392, 235. Their sum is 1078 and therefore 588*11/1078 = 6.
Programs
-
Maple
P:=proc(i) local a,b,c,k,n,s; for n from 3 by 1 to i do a:={}; for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; od; b:=nops(a); c:=op(a); s:=0; if b>1 then for k from 1 to b do s:=s+c[k]; od; else s:=c; fi; if trunc(n*b/s)=n*b/s then lprint(n); fi; od; end: P(20000);
-
Python
from sympy.ntheory.factor_ import antidivisor_count, antidivisors A192272_list = [] for n in range(3,10**10): if (n*antidivisor_count(n)) % sum(antidivisors(n,generator=True)) == 0: A192272_list.append(n) # Chai Wah Wu, Sep 07 2018
Extensions
a(15)-a(30) from Donovan Johnson, Sep 23 2011
Comments