This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192279 #6 Mar 30 2012 18:53:49 %S A192279 2,5,7,9,19,17,17,40,33,37,45,40,67,49,89,96,65,88,71,134,127,91,189, %T A192279 120,187,170,91,166,151,219,243,164,261,140,315,392,233,310,247,374, %U A192279 245,150,461,280,285,347,407,468,215,538,515,234,565,422,609,532,495 %N A192279 Anti-hypersigma(n): sum of the anti-divisors of n plus the recursive sum of the anti-divisors of the anti-divisors until 2 is reached. %C A192279 Similar to A191150 but using anti-divisors. The recursion is stopped when 2 is reached because 2 has no anti-divisors. %H A192279 Paolo P. Lava, <a href="/A192279/b192279.txt">Table of n, a(n) for n = 3..5000</a> %e A192279 n=14 -> anti-divisors are 3,4,9. We start with 3+4+9=16. %e A192279 Now for 3, 4 and 9 we repeat the procedure: %e A192279 3-> 2 -> no anti-divisors. To add: 2. %e A192279 4-> 3 -> 2 -> no anti-divisors. To add: 3+2=5. %e A192279 9-> 2,6. To add: 2+6=8. %e A192279 --- 2 -> no anti-divisors. %e A192279 --- 6 -> 4 -> 3 -> 2 -> no anti-divisors. To add: 4+3+2=9. %e A192279 Total is 16+2+5+8+9=40. %p A192279 with(numtheory); %p A192279 P:=proc(n) %p A192279 local a,b,c,k,s; %p A192279 a:={}; %p A192279 for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; %p A192279 od; %p A192279 b:=nops(a); c:=op(a); s:=0; %p A192279 if b>1 then %p A192279 for k from 1 to b do s:=s+c[k]; od; %p A192279 else s:=c; %p A192279 fi; %p A192279 b:=nops(a); c:=(sort([op(a)])); %p A192279 for k from 1 to b do if c[k]>2 then s:=s+P(c[k]); fi; od; %p A192279 s; %p A192279 end: %p A192279 Antihps:=proc(i) %p A192279 local n; %p A192279 for n from 1 to i do print(P(n)); od; %p A192279 end: %Y A192279 Cf. A066272, A191150. %K A192279 nonn,easy %O A192279 3,1 %A A192279 _Paolo P. Lava_, Jul 13 2011