This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192285 #7 Jul 22 2025 12:12:01 %S A192285 5,7,8,17,22,23,31,33,38,39,41,52,53,59,67,71,73,74,81,83,94,101,103, %T A192285 108,109,116,122,127,129,137,143,149,151,157,158,167,171,172,178,179, %U A192285 193,199,214,237,241,247,257,262,263,269,283,293,311,313,319,331,333 %N A192285 Primitive pseudo anti-perfect numbers. %C A192285 A primitive pseudo anti-perfect number is a pseudo anti-perfect number that is not a multiple of any other pseudo anti-perfect number. %C A192285 Like A006036 but using anti-divisors. %C A192285 Subset of A192270. %p A192285 with(combinat); %p A192285 P:=proc(i) %p A192285 local a,j,k,n,ok,S,v; %p A192285 v:=array(1..10000); j:=0; %p A192285 for n from 1 to i do %p A192285 a:={}; %p A192285 for k from 2 to n-1 do %p A192285 if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; %p A192285 od; %p A192285 S:=subsets(a); %p A192285 while not S[finished] do %p A192285 if convert(S[nextvalue](), `+`)=n then %p A192285 if j=0 then j:=1; v[1]:=n; print(n); break; %p A192285 else %p A192285 ok:=1; %p A192285 for k from 1 to j do %p A192285 if trunc(n/v[k])=n/v[k] then ok:=0; break; fi; %p A192285 od; %p A192285 j:=j+1; v[j]:=n; if ok=1 then print(n); fi; %p A192285 fi; %p A192285 fi; %p A192285 od; %p A192285 od; %p A192285 end: %Y A192285 Cf. A006036, A066272, A192270 %K A192285 nonn %O A192285 1,1 %A A192285 _Paolo P. Lava_, Jul 20 2011