This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192288 #43 Feb 16 2025 08:33:15 %S A192288 3,4,9,19,24,131,139,339,5881,14849,29501,57169,63061,65789,542781, %T A192288 2439241,3197249,4111561,8614481,48657789,218234169,309296261, %U A192288 731499089,1191549689,1569571661,2471800109,5687426561,9505043161,67784277581,79468538969,257067141569,290324629889,397393221689,445568135041,2260763053809 %N A192288 Almost anti-perfect numbers. %C A192288 An almost anti-perfect number is a least anti-deficient number, i.e., one such that sigma*(n)=n-1, where sigma*(n) is the sum of the anti-divisors of n. Like almost perfect numbers (see link) but using anti-divisors. %C A192288 a(29) > 2*10^10. - _Donovan Johnson_, Sep 22 2011 %H A192288 Jud McCranie, <a href="/A192288/b192288.txt">Table of n, a(n) for n = 1..36</a> %H A192288 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPerfectNumber.html">Almost perfect number</a> %e A192288 Anti-divisors of 5881 are 2, 3, 9, 19, 619, 1307, 3921. Their sum is 5880 and 5880=5881-1. %p A192288 P:=proc(n) %p A192288 local a,i,k; %p A192288 for i from 3 to n do %p A192288 a:=0; %p A192288 for k from 2 to i-1 do %p A192288 if abs((i mod k)-k/2)<1 then a:=a+k; fi; %p A192288 od; %p A192288 if i-1=a then print(i); fi; %p A192288 od; %p A192288 end: %p A192288 P(1000000); %Y A192288 Cf. A066272, A073930, A192267, A192287. %K A192288 nonn %O A192288 1,1 %A A192288 _Paolo P. Lava_, Aug 02 2011 %E A192288 a(15)-a(28) from _Donovan Johnson_, Sep 22 2011 %E A192288 a(29)-a(34) from _Jud McCranie_, Aug 31 2019 %E A192288 a(35) from _Jud McCranie_, Sep 05 2019