This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192293 #27 May 20 2021 18:30:12 %S A192293 32,98,2524,199282,1336968 %N A192293 Let sigma*_m (n) be the result of applying the sum of anti-divisors m times to n; call n (m,k)-anti-perfect if sigma*_m (n) = k*n; this sequence gives the (2,3)-anti-perfect numbers. %C A192293 Like A019281 but using anti-divisors. %C A192293 a(6) > 2*10^7. - _Chai Wah Wu_, Dec 02 2014 %e A192293 sigma*(32)= 3+5+7+9+13+21=58; sigma*(58)= 3+4+5+9+13+23+39=96 and 3*32=96. %e A192293 sigma*(98)= 3+4+5+13+15+28+39+65=172; sigma*(172)= 3+5+7+8+15+23+49+69+115=294 and 3*98=294. %e A192293 sigma*(2524)= 3+7+8+9+11+17+27+33+49+51+99+103+153+187+297+459+561+721+1683=4478; sigma*(4478)= 3+4+5+9+13+15+45+53+169+199+597+689+995+1791+2985=7572 and 3*2524=7572. %p A192293 with(numtheory): P:= proc(n) local i,j,k,s,s1; for i from 3 to n do %p A192293 k:=0; j:=i; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; s:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2; %p A192293 k:=0; j:=s; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; s1:=sigma(2*s+1)+sigma(2*s-1)+sigma(s/2^k)*2^(k+1)-6*s-2; %p A192293 if s1/i=3 then print(i); fi; od; end: P(10^9); %o A192293 (Python) %o A192293 from sympy import divisors %o A192293 def antidivisors(n): %o A192293 return [2*d for d in divisors(n) if n > 2*d and n % (2*d)] + \ %o A192293 [d for d in divisors(2*n-1) if n > d >=2 and n % d] + \ %o A192293 [d for d in divisors(2*n+1) if n > d >=2 and n % d] %o A192293 A192293_list = [] %o A192293 for n in range(1,10**4): %o A192293 if 3*n == sum(antidivisors(sum(antidivisors(n)))): %o A192293 A192293_list.append(n) # _Chai Wah Wu_, Dec 02 2014 %Y A192293 Cf. A019281, A066272, A192290, A192291, A192292. %K A192293 nonn,more %O A192293 1,1 %A A192293 _Paolo P. Lava_, Jun 29 2011 %E A192293 a(4)-a(5) from _Chai Wah Wu_, Dec 01 2014