This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192294 #16 Sep 20 2013 11:34:35 %S A192294 3,5,7,13,17,53,67,137,203,247,473,787,5197,6143,13513,15593,22523, %T A192294 30713,50243,67567,285863,337837,427927,795217,1148647,2139637, %U A192294 5743237,8393963,11869357,17229713,32094563,74662087,109121513,132094463,632904773,763850587 %N A192294 Numbers n such that Sum(1/d*_n)>Sum(1/d*_m) for all m<n, where d*_n and d*_m are the anti-divisors of n and m. %C A192294 Where record values of Sum(1/d*_n) occur. %C A192294 While sigma(n)/n>sigma(m)/m, where n>m, is equivalent to 1/sigma(n)>1/sigma(m) or even to Sum_(1/d_n)>Sum_(1/d_m), where d_n and d_m are the divisors of n and m, with the anti-divisors these equivalences do not hold. %e A192294 3 -> 1/2 = 0.5 %e A192294 5 -> 1/3+1/2 = 5/6 = 0.8333… %e A192294 7 -> 1/2+1/3+1/5 = 1.0333… %e A192294 13 -> 1/2+1/3+1/5+1/9 = 1.1444… etc. %p A192294 with(numtheory); %p A192294 P:=proc(j) %p A192294 local b,h,m,r; %p A192294 b:=0; %p A192294 for m from 3 to j do %p A192294 h:=0; %p A192294 for r from 2 to m-1 do if abs((m mod r)-r/2)<1 then h:=h+1/r; fi; od; %p A192294 if h>b then b:=h; print(m); fi; %p A192294 od; %p A192294 end: %p A192294 P(100000); %Y A192294 Cf. A004394, A066417, A192269. %K A192294 nonn %O A192294 1,1 %A A192294 _Paolo P. Lava_, Sep 02 2011 %E A192294 a(21)-a(36) from _Donovan Johnson_, Sep 07 2011